Skip to main content
Log in

Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity

  • Commentary
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Any descriptive language is necessarily metaphoric and interpretative. Two somewhat overlapping—but not identical—languages have been thoroughly employed in the last decade to address the issue of regulatory complexity in biological systems: the terminology of network theory and the jargon of electric circuitry. These approaches have found many formal equivalences between the layout of extant genetic circuits and the architecture of man-made counterparts. However, these languages still fail to describe accurately key features of biological objects, in particular the diversity of signal-transfer molecules and the diffusion that is inherent to any biochemical system. Furthermore, current formalisms associated with networks and circuits can hardly face the problem of multi-scale regulatory complexity—from single molecules to entire ecosystems. We argue that the language of economic theory might be instrumental not only to portray accurately many features of regulatory networks, but also to unveil aspects of the biological complexity problem that remain opaque to other types of analyses. The main perspective opened by the economic metaphor when applied to control of microbiological activities is a focus on metabolism, not gene selfishness, as the necessary background to make sense of regulatory phenomena. As an example, we analyse and reinterpret the widespread phenomenon of catabolite repression with the formal frame of the consumer’s choice theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Not applicable.

Code availability

Not applicable.

Notes

  1. An isoquant curve is a concave-shaped line on a graph, used in the study of microeconomics that charts all the factors, or inputs, that produce a specified level of output. This graph is used as a metric for the influence that the inputs—most commonly, capital and labor—have on the obtainable level of output or production (https://www.investopedia.com/terms/i/isoquantcurve.asp).

References

  • Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–1867

    Article  CAS  PubMed  Google Scholar 

  • Alon U (2019) An introduction to systems biology: design principles of biological circuits. CRC Press, Taylor and Francis Group, UK

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Sys Biol 2(2006):0028

    Google Scholar 

  • Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69

    Article  CAS  PubMed  Google Scholar 

  • Balleza E, Lopez-Bojorquez LN, Martínez-Antonio A, Resendis-Antonio O, Lozada-Chávez I, Balderas-Martínez YI et al (2008) Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Revs 33:133–151

    Article  Google Scholar 

  • Barabási AL (2009) Scale-free networks: a decade and beyond. Science 325:412–413

    Article  PubMed  Google Scholar 

  • Battail G (2007) Information theory and error-correcting codes in genetics and biological evolution. In Introduction to Biosemiotics: M. Barbieri (ed.), Introduction to Biosemiotics. Springer B.V, pp 299–345

  • Battail G (2019) Error-correcting codes and information in biology. Biosystems 184:103987

    Article  CAS  PubMed  Google Scholar 

  • Borkowski O, Ceroni F, Stan GB, Ellis T (2016) Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Curr Opin Microbiol 33:123–130

    Article  CAS  PubMed  Google Scholar 

  • Calles B, Goñi-Moreno Á, de Lorenzo V (2019) Digitalizing heterologous gene expression in Gram-negative bacteria with a portable ON/OFF module. Mol Syst Biol 15:e8777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, Brinker CJ (2010) Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 6:41–45

    Article  CAS  PubMed  Google Scholar 

  • Cascante M, Ortega F, Mart E (2000) New insights into our understanding of the regulation and organization of cell factories. Trends Biotechnol 18:181–182

    Article  CAS  PubMed  Google Scholar 

  • Cases I, de Lorenzo V (2001) The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 20:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN et al (2018) Burden-driven feedback control of gene expression. Nat Methods 15:387–393

    Article  CAS  PubMed  Google Scholar 

  • Chambers S, Kitney R, Freemont P (2016) The Foundry: the DNA synthesis and construction Foundry at Imperial College. Biochem Soc Trans 44:687–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin JW (2006) Programming and engineering biological networks. Curr Op Struc Biol 16:551–556

    Article  CAS  Google Scholar 

  • Cornforth DM, Foster KR (2015) Antibiotics and the art of bacterial war. Proc Natl Acad Sci USA 112:10827–10828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danchin A (2008) Bacteria as computers making computers. FEMS Microbiol Lett 33:3–26

    Article  Google Scholar 

  • Darlington APS, Kim J, Jiménez JI, Bates DG (2018) Engineering translational resource allocation controllers: mechanistic models, design guidelines, and potential biological implementations. ACS Synth Biol 7:2485–2496

    Article  CAS  PubMed  Google Scholar 

  • Davies JA (2019) Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be? Life (basel) 9:6

    Google Scholar 

  • Dawkins R (1989) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • de Lorenzo V (2011) Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng Bugs 2:3–7

    Article  PubMed  Google Scholar 

  • de Lorenzo V (2014) From the selfish gene to selfish metabolism: revisiting the central dogma. Bioessays 36:226–235

  • de Lorenzo V (2015) It’s the metabolism, stupid! Environ Microbiol Rep 7:18–19

    Article  PubMed  Google Scholar 

  • de Lorenzo V, Danchin A (2008) Synthetic biology: discovering new worlds and new words: the new and not so new aspects of this emerging research field. EMBO Rep 9:822–827

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lorenzo V, Fraile S, Jiménez JI (2010) Emerging systems and synthetic biology approaches to hydrocarbon biotechnology. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin. https://doi.org/10.1007/978-3-540-77587-4_97

  • de Lorenzo V, Sekowska A, Danchin A (2015) Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Revs 39:96–119

    Google Scholar 

  • Dronamraju KR (1999) Erwin Schrödinger and the origins of molecular biology. Genetics 153:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438:449–453

    Article  CAS  PubMed  Google Scholar 

  • GarcíaCallejas D (2006) Biology and economics: metaphors that economists usually take from biology. Ecos de Economia 11:004186

    Google Scholar 

  • Goñi-Moreno A, Nikel PI (2019) High-performance biocomputing in synthetic biology-integrated transcriptional and metabolic circuits. Front Bioeng Biotechnol 7:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  PubMed  Google Scholar 

  • Gowdy J (1997) Introduction: biology and economics. Struct Change Econ Dynam 8:377–383

    Article  Google Scholar 

  • Graebner C (2018) How to Relate models to reality? An epistemological framework for the validation and verification of computational models. J Artif Societ Social Simul 21:8

    Article  Google Scholar 

  • Gribbin J (2011) In search of Schrodinger’s cat: Quantum physics and reality. Bantam Books, New York

  • Gyorgy A, Jiménez JI, Yazbek J, Huang HH, Chung H, Weiss R, Del Vecchio D (2015) Isocost lines describe the cellular economy of genetic circuits. Biophys J 109:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamming RW (1950) Error detecting and error correcting codes. Bell System Tech J 29:147–160

    Article  Google Scholar 

  • Hidalgo CA, Hausmann R (2009) The building blocks of economic complexity. Proc Natl Acad Sci USA 106:10570–10575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holowko MB, Frow EK, Reid JC, Rourke M, Vickers CE (2021) Building a biofoundry. Synth Biol 6:yssa026

    Article  Google Scholar 

  • Jiang S, Wang Y, Kaiser M, Krasnogor N (2020) NIHBA: a network interdiction approach for metabolic engineering design. Bioinformatics 36:3482–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller EF (2005) Revisiting “scale-free” networks. BioEssays 27:1060–1068

    Article  PubMed  Google Scholar 

  • Keller EF (2007) A clash of two cultures. Nature 445:603–603

    Article  PubMed  Google Scholar 

  • Kim J, Pérez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V (2016a) High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ Microbiol 18:3327–3341

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Darlington A, Salvador M, Utrilla J, Jiménez JI (2020) Trade-offs between gene expression, growth and phenotypic diversity in microbial populations. Curr Opin Biotechnol 62:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Salvador M, Saunders E, González J, Avignone-Rossa C, Jiménez JI (2016b) Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis. Essays Biochem 60:303–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch AL (1985) The macroeconomics of bacterial growth. In: Bacteria in their natural environments (Special Publication of the Soc Gen Microbiol). Academic Press, New York

  • Krasnogor N, Gheorghe M, Terrazas G, Diggle S, Williams P, Camara M (2005) An appealing computational mechanism drawn from bacterial quorum sensing. Bull Eur Assoc Theor Comput Sci 85:135–148

    Google Scholar 

  • Kwok R (2010) Five hard truths for synthetic biology. Nature News 463:288–290

    Article  CAS  Google Scholar 

  • Lastiri-Pancardo G, Mercado-Hernández JS, Kim J, Jiménez JI, Utrilla J (2020) A quantitative method for proteome reallocation using minimal regulatory interventions. Nat Chem Biol 16:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Nielsen J, Stephanopoulos G (2018) Synthetic biology: parts, devices and applications. John Wiley & Sons, New Jersey

  • Lui LT, Xue X, Sui C, Brown A, Pritchard DI, Halliday N et al (2013) Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nature Chemistry 5:1058–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loomis WF Jr, Magasanik B (1967) The catabolite repression gene of the lac operon in Escherichia coli. J Mol Biol 23:487–494

    Article  CAS  PubMed  Google Scholar 

  • Madan Babu M, Teichmann SA (2003) Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucl Acids Res 31:1234–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mankiw NG (2008) Principles of microeconomics: South-Western Cengage Learning

  • Marqués S, Ramos JL (1993) Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol 9:923–929

    Article  PubMed  Google Scholar 

  • Mather WH, Hasty J, Tsimring LS, Williams RJ (2013) Translational cross talk in gene networks. Biophys J 104:2564–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael RT, Becker GS (1973) On the new theory of consumer behavior. Swed J Econom 75:378–396

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  • Morange M, Lagerkvist C, Helix D (1998) A history of molecular biology. Endeavour 22:165

    Article  Google Scholar 

  • Müller-Hill B (2011) The lac operon. de Gruyter, Berlin

  • Ng W-L, Bassler BL (2009) Bacterial quorum-sensing network architectures. Ann Rev Genet 43:197–222

    Article  CAS  PubMed  Google Scholar 

  • Nicholson W, Snyder CM (2012) Microeconomic theory: Basic principles and extensions. Cengage Learning, Boston

  • Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA et al (2016) Genetic circuit design automation. Science 352:aac7341

  • Panchal C, Azimi S, Petre I (2016) Generating the logicome of a biological network. In: Int Conf Alg Comp Biol. Springer New York, pp 38–49

  • Parsek MR, Greenberg E (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  CAS  PubMed  Google Scholar 

  • Pflüger-Grau K, de Lorenzo V (2014) From the phosphoenolpyruvate phosphotransferase system to selfish metabolism: a story retraced in Pseudomonas putida. FEMS Microbiol Lett 356(2):144–153

  • Qian Y, Huang HH, Jiménez JI, Del Vecchio D (2017) Resource competition shapes the response of genetic circuits. ACS Synth Biol 6:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Marqués S, Timmis KN (1997) Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 51:341–373

    Article  CAS  PubMed  Google Scholar 

  • Ranea JA (2006) Genome evolution: micro(be)-economics. Heredity 96:337–338

    Article  CAS  PubMed  Google Scholar 

  • Ranea JA, Grant A, Thornton JM, Orengo CA (2005) Microeconomic principles explain an optimal genome size in bacteria. Trends Genet 21:21–25

    Article  CAS  PubMed  Google Scholar 

  • Robertson WE, Funke LFH, de la Torre D, Fredens J, Elliott TS, Spinck M et al (2021) Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372:1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Rojo F (2010) Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684

    Article  CAS  PubMed  Google Scholar 

  • Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U (2012) Multidimensional optimality of microbial metabolism. Science 336:601–604

    Article  CAS  PubMed  Google Scholar 

  • Silva-Rocha R, de Lorenzo V (2008) Mining logic gates in prokaryotic transcriptional regulation networks. FEBS Lett 582:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Silva-Rocha R, Tamames J, dos Santos VM, de Lorenzo V (2011) The logicome of environmental bacteria: merging catabolic and regulatory events with Boolean formalisms. Environ Microbiol 13:2389–2402

    Article  CAS  PubMed  Google Scholar 

  • Sneppen K, Krishna S, Semsey S (2010) Simplified models of biological networks. Ann Rev Biophys 39:43–59

    Article  CAS  Google Scholar 

  • Stanton BC, Nielsen AA, Tamsir A, Clancy K, Peterson T, Voigt CA (2014) Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature Chem Biol 10:99–105

    Article  CAS  Google Scholar 

  • Tas H, Grozinger L, Stoof R, de Lorenzo V, Goñi-Moreno Á (2021) Contextual dependencies expand the re-usability of genetic inverters. Nat Commun 12:355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6:692–696

    Article  PubMed  Google Scholar 

  • Vaidyanathan P, Der BS, Bhatia S, Roehner N, Silva R, Voigt CA, Densmore D (2015) A framework for genetic logic synthesis. Proc IEEE 103:2196–2207

    Article  Google Scholar 

  • Voigt CA (2006) Genetic parts to program bacteria. Curr Op Biotech 17:548–557

    Article  CAS  Google Scholar 

  • Vosniadou S (1988) Analogical reasoning as a mechanism in knowledge acquisition: a developmental perspective. Center for the Study of Reading. Technical Report no. 438. https://catalogue.nla.gov.au/Record/5498062

  • Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL et al (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucl Acids Res 42:D581–D591

    Article  CAS  PubMed  Google Scholar 

  • Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC et al (2014) Evolution of microbial markets. Proc Natl Acad Sci USA 111:1237–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia P-F, Ling H, Foo JL, Chang MW (2019) Synthetic genetic circuits for programmable biological functionalities. Biotechnol Adv 37:107393

    Article  PubMed  Google Scholar 

  • Zhuang K, Vemuri GN, Mahadevan R (2011) Economics of membrane occupancy and respiro-fermentation. Mol Sys Biol 7:500

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Prof. Brigitte Nerlich (University of Nottingham, UK) for the critical reading of the manuscript and to the two anonymous reviewers of the article who provided the most useful insights into the matters hereby addressed.

Funding

The work in VdL Lab work is funded by the SETH (RTI2018-095584-B-C42) (MINECO/FEDER) and SyCoLiM (ERA-COBIOTECH 2018—PCI2019-111859–2) Projects of the Spanish Ministry of Science and Innovation, the MADONNA (H2020-FET-OPEN-RIA-2017–1-766975), BioRoboost (H2020-NMBP-BIO-CSA-2018–820699), SynBio4Flav (H2020-NMBP-TR-IND/H2020-NMBP-BIO-2018–814650) and MIX-UP (MIX-UP H2020-BIO-CN-2019–870294) Contracts of the European Union and the InGEMICS-CM (S2017/BMD-3691) Project of the Comunidad de Madrid—European Structural and Investment Funds—(FSE, FECER).

Author information

Authors and Affiliations

Authors

Contributions

Juhyun Kim, Rafael Silva-Rocha, and Víctor de Lorenzo contributed to the contents and writing of the article.

Corresponding author

Correspondence to Víctor de Lorenzo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate and publication

Juhyun Kim, Rafael Silva-Rocha, and Víctor de Lorenzo approved the contents of the article and agreed on its publication if accepted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Silva-Rocha, R. & de Lorenzo, V. Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity . Int Microbiol 24, 507–519 (2021). https://doi.org/10.1007/s10123-021-00194-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-021-00194-w

Keywords

Navigation