Skip to main content
Log in

Biotransformation of Phenylacetonitrile to 2-Hydroxyphenylacetic Acid by Marine Fungi

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Marine fungi belonging to the genera Aspergillus, Penicillium, Cladosporium, and Bionectria catalyzed the biotransformation of phenylacetonitrile to 2-hydroxyphenylacetic acid. Eight marine fungi, selected and cultured with phenylacetonitrile in liquid mineral medium, catalyzed it quantitative biotransformation to 2-hydroxyphenylacetic acid. In this study, the nitrile group was firstly hydrolysed, and then, the aromatic ring was hydroxylated, producing 2-hydroxyphenylacetic acid with 51 % yield isolated. In addition, the 4-fluorophenylacetonitrile was exclusively biotransformed to 4-fluorophenylacetic acid by Aspergillus sydowii Ce19 (yield = 51 %). The enzymatic biotransformation of nitriles is not trivial, and here, we describe an efficient method for production of phenylacetic acids in mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Allouche N, Sayadi S (2005) Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid, and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens strain. J Agric Food Chem 53:6525–6530

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  PubMed  CAS  Google Scholar 

  • Effenberger F, Oßwald S (2001) Enantioselective hydrolysis of (RS)-2-fluoroarylacetonitriles using nitrilase from rabidopsis thaliana. Tetrahedron-Asymmetr 12:279–285

    Google Scholar 

  • Kaplan O, Vejvoda V, Plihal O, Pompach P, Kavan D, Bojarova P, Bezouska K, Mackova M, Cantarella M, Jirku V, Martinkova L (2006a) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Article  PubMed  CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Charvatova-Pisvejcova A, Martinkova L (2006b) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896

    Article  PubMed  CAS  Google Scholar 

  • Kaplan O, Nikolau K, Pisvejcova A, Martinkova L (2006c) Hydrolysis of nitriles and amides by filamentous fungi. Enzym Microb Technol 38:260–264

    Article  CAS  Google Scholar 

  • Kielbasinski P, Rachwalski M, Mikolajczyk M, Rutjes FPJT (2008) Nitrilase-catalysed hydrolysis of cyanomethyl p-tolyl sulfoxide: stereochemistry and mechanism. Tetrahedron-Asymmetry 19:562–567

    Article  CAS  Google Scholar 

  • Martins MP, Mouad AM, Boschini L, Seleghim MHR, Sette LD, Porto ALM (2011) Marine fungi Aspergillus sydowii and Trichoderma sp. catalyze the hydrolysis of benzyl glycidyl ether. Marine Biotechnol 13:314–320

    Article  CAS  Google Scholar 

  • McNulty J, Das P (2009) Development of a one-pot method for the homologation of aldehydes to carboxylic acids. Tetrahedron 65:7794–7800

    Article  CAS  Google Scholar 

  • O'Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes–a comparative study. J Appl Microbiol 95:1161–1174

    Google Scholar 

  • Ortega SN, Nitschke M, Mouad AM, Landgraf MD, Rezende MOO, Seleghim MHR, Sette LD, Porto ALMP (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegradation 22:43–50

    Article  PubMed  CAS  Google Scholar 

  • Rocha LC, Ferreira HV, Pimenta EF, Berlinck RGS, Seleghim MHR, Javaroti DCD, Sette LD, Bonugli RC, Porto ALM (2009) Bioreduction of alphachloroacetophenone by whole cells of marine fungi. Biotechnol Lett 31:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Rocha LC, Ferreira HV, Pimenta EF, Berlinck RGS, Rezende MOO, Landgraf MD, Seleghim MHR, Sette LD, Porto ALM (2010) Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii. Marine Biotechnol 12:552–557

    Article  CAS  Google Scholar 

  • Rustler S, Stolz A (2007) Isolation and characterization of a nitrile hydrolyzing acidotolerant black yeast—Exophiala oligosperma R1. Appl Microbial Biotechnol 75:899–908

    Article  CAS  Google Scholar 

  • Rustler S, Chmura A, Sheldon RA, Stolz A (2008) Characterisation of the substrate specificity of the nitrile hydrolyzing system of the acid tolerant black yeast Exophiala oligosperma R1. Stud Mycol 61:165–174

    Article  PubMed  CAS  Google Scholar 

  • Šnajdrova R, Kristova-Mylerova V, Crestia D, Nikolaou K, Kuzma M, Lemaire M, Gallienne E, Bolte J, Karel B, Vladimir K, Martinkova L (2004) Nitrile biotransformation by Aspergillus niger. J Mol Catal B Enzymatic 29:227–232

    Article  Google Scholar 

  • Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  PubMed  CAS  Google Scholar 

  • Vejvoda V, Kaplan O, Bezouska K, Pompach P, Sulc M, Cantarella M, Benada O, Uhnakova B, Rinagelova A, Lutz-Wahl S, Fischer L, Kren V, Martinkova L (2008) Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B Enzymatic 50:99–106

    Article  CAS  Google Scholar 

  • Winkler M, Kaplan O, Vejvoda V, Klempier N, Martinkova L (2009) Biocatalytic application of nitrilases from Fusarium solani O1 and Aspergillus niger K10. J Mol Catal B Enzymatic 59:243–247

    Article  CAS  Google Scholar 

  • Yang D, Fu H (2010) A simple and practical copper-catalyzed approach to substituted phenols from aryl halides by using water as the solvent. Chem Eur J 16:2366–2370

    Article  PubMed  CAS  Google Scholar 

  • Yildirim S, Ruinatscha R, Rainer G, Roland W, Kohler HE, Witholt B, Schmid A (2006) Selective hydrolysis of the nitrile group of cis-dihydrodiols from aromatic nitriles. J Mol Catal B Enzymatic 38:76–83

    Article  CAS  Google Scholar 

  • Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L (2008) A new nitrilase from Bradyrhizobium japonicum USDA 110 gene cloning, biochemical characterization and substrate specificity. J Biotechnol 133:327–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JRO thanks FAPESP (grant no. 2008/56371-9) for the scholarships. The authors wish to thank Prof. R.G.S. Berlinck (Instituto de Química de São Carlos–USP) for providing the marine fungal strains. ALMP is grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial support. The authors also wish to thank Professor Arlene G. Corrêa (DQ/UFSCar, São Carlos, SP, Brazil) for donating the 4-fluorophenylacetonitrile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz Meleiro Porto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, J.R., Mizuno, C.M., Seleghim, M.H.R. et al. Biotransformation of Phenylacetonitrile to 2-Hydroxyphenylacetic Acid by Marine Fungi. Mar Biotechnol 15, 97–103 (2013). https://doi.org/10.1007/s10126-012-9464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9464-1

Keywords

Navigation