Skip to main content
Log in

Tentacle Transcriptomes of the Speckled Anemone (Actiniaria: Actiniidae: Oulactis sp.): Venom-Related Components and Their Domain Structure

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Cnidarians are one of the oldest known animal lineages (ca. 700 million years), with a unique envenomation apparatus to deliver a potent mixture of peptides and proteins. Some peptide toxins from cnidarian venom have proven therapeutic potential. Here, we use a transcriptomic/proteomic strategy to identify sequences with similarity to known venom protein families in the tentacles of the endemic Australian ‘speckled anemone’ (Oulactis sp.). Illumina RNASeq data were assembled de novo. Annotated sequences in the library were verified by cross-referencing individuals’ transcriptomes or protein expression evidence from LC-MS/MS data. Sequences include pore-forming toxins, phospholipases, peptidases, neurotoxins (sodium and potassium channel modulators), cysteine-rich secretory proteins and defensins (antimicrobial peptides). Fewer than 4% of the sequences in the library occurred across the three individuals examined, demonstrating high sequence variability of an individual’s arsenal. We searched for actinoporins in Oulactis sp. to assess sequence similarity to the only described toxins (OR-A and -G) for this genus and examined the domain architecture of venom-related peptides and proteins. The novel putative actinoporin of Oulactis sp. has a greater similarity to other species in the Actiniidae family than to O. orientalis. Venom-related sequences have an architecture that occurs in single, repeat or multi-domain combinations of venom-related (e.g. ShK-like) and non-venom (e.g. whey acid protein) domains. This study has produced the first transcriptomes for an endemic Australian sea anemone species and the genus Oulactis, while identifying nearly 400 novel venom-related peptides and proteins for future structural and functional analyses and venom evolution studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderluh G, Maček P (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40:111–124

    Article  CAS  PubMed  Google Scholar 

  • Andreosso A, Smout MJ, Seymour JE (2014) Dose and time dependence of box jellyfish antivenom. J Venomous Anim Toxins Incl Trop Dis 20:1–5

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beress L (1982) Biologically active compounds from coelenterates. Pure Appl Chem 54:1981–1994

    Article  CAS  Google Scholar 

  • Bloom DA, Burnett JW, Alderslade P (1998) Partial purification of box jellyfish (Chironex fleckeri) nematocyst venom isolated at the beachside. Toxicon 36:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruskiewich R (1999) geecee tool. http://www.bioinformatics.nl/cgi-bin/emboss/geecee. Accessed 21 Aug 2017

  • Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG, Bateman J, Bryant S, Guzikowski AR, Tsai SL, Coyne S, Ye WW, Freeman RM Jr, Peshkin L, Tabin CJ, Regev A, Haas BJ, Whited JL (2017) A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18:762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castañeda O, Sotolongo V, Amor AM, Stöcklin R, Anderson AJ, Harvey AL, Engström A, Wernstedt C, Karlsson E (1995) Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon 33:603–613

    Article  PubMed  Google Scholar 

  • Chandy KG, Norton RS (2017) Peptide blockers of KV1.3 channels in T cells as therapeutics for autoimmune disease. Curr Opin Chem Biol 38:97–107

    Article  CAS  PubMed  Google Scholar 

  • Coleman N (1999) Dangerous sea creatures - aquatic survival guide. Neville Coleman’s underwater. Geographic Pty Ltd, Springwood

    Google Scholar 

  • Columbus-Shenkar YY, Sachkova MY, Macrander J et al (2018) Dynamics of venom composition across a complex life cycle. Elife 7:e35014

    Article  PubMed  PubMed Central  Google Scholar 

  • Cristofori-Armstrong B, Rash LD (2017) Acid-sensing ion channel (ASIC) structure and function: insights from spider, snake and sea anemone venoms. Neuropharmacology 127:173–184

    Article  CAS  PubMed  Google Scholar 

  • Di Tommaso P, Moretti S, Xenarios I et al (2011) T-coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diochot S, Schweitz H, Béress L, Lazdunski M (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel KV3.4. J Biol Chem 273:6744–6749

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Jin A-H, Vetter I et al (2014) Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 5:3521

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Frances L (1973) Intraspecific aggression and its effect on the distribution of Anthopleura elegantissima and some related sea anemones. Biol Bull 144:73–92

    Article  Google Scholar 

  • Garcia PJ, Schein RMH, Burnett JW (1994) Fulminant hepatic failure from a sea anemone sting. Ann Intern Med 120:665–666

    Article  CAS  PubMed  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    Article  CAS  PubMed  Google Scholar 

  • Gibbs HL, Sanz L, Calvete JJ (2009) Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes. J Mol Evol 68:113–125

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X, Fu YX, Li WH (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 12:546–557

    CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Shiomi K (2006) Peptide toxins in sea anemones: structural and functional aspects. Mar Biotechnol (NY) 8:1–10

    Article  CAS  Google Scholar 

  • Hordijk W, Gascuel O (2005) Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics 21:4338–4347

    Article  CAS  PubMed  Google Scholar 

  • Il’ina AP, Monastyrnaya MM, Sokotun IN et al (2005) Actinoporins from the sea of Japan anemone Oulactis orientalis: isolation and partial characterization. Russ J Bioorg Chem 31:34–42

    Article  CAS  Google Scholar 

  • Jungo F, Bairoch A (2005) Tox-Prot, the toxin protein annotation program of the Swiss-Prot protein knowledgebase. Toxicon 45:293–301

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  PubMed  Google Scholar 

  • Kass-Simon G, Scappaticci AA Jr (2002) The behavioral and development physiology of nematocysts. Can J Zool 80:1772–1794

    Article  Google Scholar 

  • Krishnarjuna B, MacRaild CA, Sunanda P, Morales RAV, Peigneur S, Macrander J, Yu HH, Daly M, Raghothama S, Dhawan V, Chauhan S, Tytgat J, Pennington MW, Norton RS (2018a) Structure, folding and stability of a minimal homologue from Anemonia sulcata of the sea anemone potassium channel blocker ShK. Peptides 99:169–178

    Article  CAS  PubMed  Google Scholar 

  • Krishnarjuna B, Villegas-Moreno J, Mitchell ML, Csoti A, Peigneur S, Amero C, Pennington MW, Tytgat J, Panyi G, Norton RS (2018b) Synthesis, folding, structure and activity of a predicted peptide from the sea anemone Oulactis sp. with an ShKT fold. Toxicon 150:50–59

    Article  CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefort V, Longueville J-E, Gascuel O (2017) SMS: smart model selection in PhyML. Mol Biol Evol 34:2422–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenarcic B, Ritonja A, Strukelj B, Turk B, Turk V (1997) Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J Biol Chem 272:13899–13903

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, Li P (2014) Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J Proteome 106:17–29

    Article  CAS  Google Scholar 

  • Logashina YA, Solstad RG, Mineev KS et al (2017) New disulfide-stabilized fold provides sea anemone peptide to exhibit both antimicrobial and TRPA1 potentiating properties. Toxins (Basel) 9:1–23

  • Macrander J, Daly M (2016) Evolution of the cytolytic pore-forming proteins (Actinoporins) in sea anemones. Toxins (Basel) 8:368

    Article  CAS  Google Scholar 

  • Macrander J, Broe M, Daly M (2015) Multi-copy venom genes hidden in de novo transcriptome assemblies, a cautionary tale with the snakelocks sea anemone Anemonia sulcata (Pennant, 1977). Toxicon 108:184–188

    Article  CAS  PubMed  Google Scholar 

  • Macrander J, Broe M, Daly M (2016) Tissue-specific venom composition and differential gene expression in sea anemones. Genome Biol Evol 8:2358–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madio B, Undheim EAB, King GF (2017) Revisiting venom of the sea anemone Stichodactyla haddoni: Omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. J Proteome 166:83–92

    Article  CAS  Google Scholar 

  • Malpezzi ELA, de Freitas J, Muramoto K, Kamiya H (1993) Characterization of peptides in sea anemone venom collected by a novel procedure. Toxicon 31:853–864

    Article  CAS  PubMed  Google Scholar 

  • Menezes MC, Furtado MF, Travaglia-Cardoso SR, Camargo AC, Serrano SM (2006) Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. Toxicon 47:304–312

    Article  CAS  PubMed  Google Scholar 

  • Mitchell ML (2010) Actiniaria (Cnidaria:Anthozoa) of Port Phillip Bay, Victoria: including a taxonomic case study of Oulactis muscosa and Oulactis mcmurrichi. Southern Cross University

  • Mitchell ML, Shafee TMA, Papenfuss AT, Norton RS (2019) Evolution of cnidarian trans-defensins: sequence, structure and exploration of chemical space. Proteins Struct Funct Bioinforma Prot 25679:1–10

    Google Scholar 

  • Monastyrnaya M, Peigneur S, Zelepuga E et al (2016) Kunitz-type peptide HCRG21 from the sea anemone Heteractis crispa is a full antagonist of the TRPV1 receptor. Mar Drugs 14:229

    Article  CAS  PubMed Central  Google Scholar 

  • Moran Y, Genikhovich G, Gordon D et al (2012) Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proc R Soc B Biol Sci 279:1351–1358

    Article  CAS  Google Scholar 

  • Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV, Notredame C (2007) The M-coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35:W645–W648

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagata K, Hide M, Tanaka T, Ishii K, Izawa M, Sairenji T, Tomita K, Shimizu E (2006) Anaphylactic shock caused by exposure to sea anemones. Allergol Int 55:181–184

    Article  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peigneur S, Béress L, Möller C, Marí F, Forssmann WG, Tytgat J (2012) A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins. FASEB J 26:5141–5151

    Article  CAS  PubMed  Google Scholar 

  • Pennington MW, Czerwinski A, Norton RS (2017) Peptide therapeutics from venom: current status and potential. Bioorg Med Chem 26:2738–2758

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Ponce D, Brinkman D, Potriquet J, Mulvenna J (2016) Tentacle transcriptome and venom proteome of the Pacific Sea nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins (Basel) 8:102

    Article  CAS  Google Scholar 

  • Prentis PJ, Pavasovic A, Norton RS (2018) Sea anemones: quiet achievers in the field of peptide toxins. Toxins (Basel) 10:36

    Article  CAS  Google Scholar 

  • Ramírez-Carreto S, Vera-Estrella R, Portillo-Bobadilla T et al (2019) Transcriptomic and proteomic analysis of the tentacles and mucus of Anthopleura dowii Verrill, 1869. Mar Drugs 17:436–459

  • Rivera-de-Torre E, Martínez-del-Pozo Á, Garb JE (2018) Stichodactyla helianthus’ de novo transcriptome assembly: discovery of a new actinoporin isoform. Toxicon 150:105–114

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez AA, Salceda E, Garateix AG, Zaharenko AJ, Peigneur S, López O, Pons T, Richardson M, Díaz M, Hernández Y, Ständker L, Tytgat J, Soto E (2014) A novel sea anemone peptide that inhibits acid-sensing ion channels. Peptides 53:3–12

    Article  CAS  PubMed  Google Scholar 

  • Romero L, Marcussi S, Marchi-Salvador DP, Silva FP Jr, Fuly AL, Stábeli RG, da Silva SL, González J, Monte AD, Soares AM (2010) Enzymatic and structural characterization of a basic phospholipase A2 from the sea anemone Condylactis gigantea. Biochimie 92:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Sanamyan NP, Sanamyan KE (2009) Shallow water anemones (Cnidaria: Actiniaria) from south-eastern coast of Kamchatka. Invertebr Zool 5:155–172

    Article  Google Scholar 

  • Schmidt GH (1982) Replacement of discharged cnidae in the tentacles of Anemonia sulcata. J Mar Biol Assoc U K 62:685

    Article  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafee T, Mitchell ML, Norton RS (2019) Mapping the chemical and sequence space of the ShKT superfamily. Toxicon 165:95–102

    Article  CAS  PubMed  Google Scholar 

  • Shick JM (1991) A functional biology of sea anemones. Chapman & Hall, London

    Book  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  CAS  PubMed  Google Scholar 

  • Sintsova O, Gladkikh I, Chausova V, Monastyrnaya M, Anastyuk S, Chernikov O, Yurchenko E, Aminin D, Isaeva M, Leychenko E, Kozlovskaya E (2018) Peptide fingerprinting of the sea anemone Heteractis magnifica mucus revealed neurotoxins, Kunitz-type proteinase inhibitors and a new β-defensin α-amylase inhibitor. J Proteome 173:12–21

    Article  CAS  Google Scholar 

  • Stabili L, Schirosi R, Parisi M, Piraino S, Cammarata M (2015) The mucus of Actinia equina (Anthozoa, Cnidaria): an unexplored resource for potential applicative purposes. Mar Drugs 13:5276–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32:W309–W312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Štrukelj B, Lenarčič B, Gruden K et al (2000) Equistatin, a protease inhibitor from the sea anemone Actinia equina, is composed of three structural and functional domains. Biochem Biophys Res Commun 269:732–736

    Article  CAS  PubMed  Google Scholar 

  • Sunanda P, Krishnarjuna B, Peigneur S et al (2018) Identification, chemical synthesis, structure, and function of a new KV1 channel blocking peptide from Oulactis sp. Pept Sci 110:1–10

    Article  CAS  Google Scholar 

  • Suput D (2011) Interactions of cnidarian toxins with the immune system. Inflamm Allergy Drug Targets 10:429–437

    Article  CAS  PubMed  Google Scholar 

  • Surm JM, Smith HL, Madio B, Undheim EAB, King GF, Hamilton BR, van der Burg C, Pavasovic A, Prentis PJ (2019) A process of convergent amplification and tissue-specific expression dominates the evolution of toxin and toxin-like genes in sea anemones. Mol Ecol 28:2272–2289

    CAS  PubMed  Google Scholar 

  • Tarcha EJ, Olsen CM, Probst P et al (2017) Safety and pharmacodynamics of dalazatide, a KV1.3 channel inhibitor, in the treatment of plaque psoriasis: a randomized phase 1b trial. PLoS One 12:1–19

    Article  CAS  Google Scholar 

  • Tudor JE, Pallaghy PK, Pennington MW, Norton RS (1996) Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat Struct Biol 3:317–320

    Article  CAS  PubMed  Google Scholar 

  • Wallace IM, O’Sullivan O, Higgins DG, Notredame C (2006) M-coffee: combining multiple sequence alignment methods with T-coffee. Nucleic Acids Res 34:1692–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Gao B, Zhu S (2016) A single-point mutation enhances dual functionality of a scorpion toxin. Comp Biochem Physiol C Toxicol Pharmacol 179:72–78

    Article  CAS  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  CAS  PubMed  Google Scholar 

  • Williamson JA, Fenner PJ, Burnett JW, Rifkin JF (eds) (1996) Venomous and poisonous marine animals: a medical and biological handbook. University of New South Wales Press, Sydney

    Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359

    Article  CAS  PubMed  Google Scholar 

  • Won A, Pripotnev S, Ruscito A, Ianoul A (2011) Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys Chem B 115:2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam TW, Li Y, Xu X, Wong GK, Wang J (2014) SOAPdenovo-trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Smith SA (2013) Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics 14:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge staff at the Monash Biomedical Proteomics Facility and Dr. Nathan Croft for proteomic assistance; Ms. Esperanza Rivera-de-Torre for supplying S. helianthus actinoporin sequences and Dr. Andrew Hugall, Ms. Fiona Boyle and Dr. Karin Luna-Ramirez for the helpful discussions. Computational resources were supported by the R@CMon/Monash Node of the NeCTAR Research Cloud, an initiative of the Australian Government’s Super Science Scheme and the Education Investment Fund.

Funding

This project was funded in part by ARC linkage grant LP150100621. M.L.M. received an Australian Government Research Training Program Scholarship, Monash Medicinal Chemistry Faculty Scholarship and Monash University-Museum Victoria Scholarship top-up. R.S.N., A.T.P. and A.W.P. received fellowship support from the Australian National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material collection was performed by M.L.M. and R.A.V.M. and material preparation for transcriptome studies by M.L.M. Material preparation for mass spectrometry experiments was performed by M.L.M. and R.A.V.M.. Data collection was performed by M.L.M. and G.Q.T. and data analysis by M.L.M. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Michela L. Mitchell.

Ethics declarations

All animal studies were carried out in accordance with the Victorian Fisheries Authority collection permit and Monash University Animal Ethics Regulations, Guidelines and Codes.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Associated supplementary material may be found in the online version of this article and in the supplementary material and the online data set. Supplementary data files 1 through 6 are lodged as an online dataset in the data repository zenodo.org (https://doi.org/10.5281/zenodo.2561554) and Supplementary data files 7–9 may be found in the online version of this article;

Data file 1. Oulactis_sp_tentacle_Indv1_quant.sf

Data file 2. Oulactis_sp_tentacle_Indv2_quant.sf

Data file 3. Oulactis_sp_tentacle_Indv3_quant.sf

Data file 4. Indv1_Oulactis_sp_Trinotate_Report_1e-10.xlsx

Data file 5. Indv2_Oulactis_sp_Trinotate_Report_1e-10.xlsx

Data file 6. Indv3_Oulactis_sp_Trinotate_Report_1e-10.xlsx

Data file 7. VenomComponentLibrary.xlsx

Data file 8. Actinoporin phylogeny sequence alignment

Data file 9. Sequences of domain occurrence examples.xlsx

ESM 1

(XLSX 235 kb)

ESM 2

(DOCX 883 kb)

ESM 3

(PHY 5 kb)

ESM 4

(XSLX 695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, M.L., Tonkin-Hill, G.Q., Morales, R.A.V. et al. Tentacle Transcriptomes of the Speckled Anemone (Actiniaria: Actiniidae: Oulactis sp.): Venom-Related Components and Their Domain Structure. Mar Biotechnol 22, 207–219 (2020). https://doi.org/10.1007/s10126-020-09945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09945-8

Keywords

Navigation