Skip to main content
Log in

Circulating MicroRNAs Indicative of Sex and Stress in the European Seabass (Dicentrarchus labrax): Toward the Identification of New Biomarkers

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) constitute a new category of biomarkers. Studies on miRNAs in non-mammalian species have drastically increased in the last few years. Here, we explored the use of miRNAs as potential, poorly invasive markers, to identify sex and characterize acute stress in fish. The European seabass (Dicentrarchus labrax) was chosen as a model because of its rapid response to stress and its specific sex determination system, devoid of sexual chromosomes. We performed a small RNA-sequencing analysis in the blood plasma of male and female European seabass (mature and immature) as well as in the blood plasma of juveniles submitted to an acute stress and sampled throughout the recovery period (at 0 h, 0.5 h, 1.5 h and 6 h). In immature individuals, both miR-1388-3p and miR-7132a-5p were up-regulated in females, while miR-499a-5p was more abundant in males. However, no miRNAs were found to be differentially expressed between sexes in the blood plasma of mature individuals. For the acute stress analysis, five miRNAs (miR-155-5p, miR-200a-3p, miR-205-1-5p, miR-143-3p, and miR-223-3p) followed cortisol production over time. All miRNAs identified were tested and validated by RT-qPCR on sequenced samples. A complementary analysis on the 3′UTR sequences of the European seabass allowed to predict potential mRNA targets, some of them being particularly relevant regarding stress regulation, e.g., the glucocorticoid receptor 1 and the mineralocorticoid receptor. The present study provides new avenues and recommendations on the use of miRNAs as biomarkers of sex or stress of the European seabass, with potential application on other fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and supplementary information.

References

  • Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. ELife 4:e05005

  • Alfonso S, Houdelet C, Bessa E, Geffroy B, Sadoul B (2023) Water temperature explains part of the variation in basal plasma cortisol level, within and between- fish species. J Fish Biol. https://doi.org/10.1111/jfb.15342

    Article  PubMed  Google Scholar 

  • Barozai MYK (2012) Identification and characterization of the microRNAs and their targets in Salmo salar. Gene 499:163–168

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Priyam M, Foysal J, Gupta SK, Sundaray JK (2020) Role of sex‐biased miRNAs in teleosts – a review. Rev Aquac 13. https://doi.org/10.1111/raq.12474

  • Bouchareb A, Le Cam A, Montfort J, Gay S, Nguyen T, Bobe J, Thermes V (2017) Genome-wide identification of novel ovarian-predominant miRNAs: new insights from the medaka (Oryzias latipes). Sci Rep 7(1), Article 1. https://doi.org/10.1038/srep40241

  • Brosset P, Cooke SJ, Schull Q, Trenkel VM, Soudant P, Lebigre C (2021) Physiological biomarkers and fisheries management. Rev Fish Biol Fish 31:797–819

    Article  Google Scholar 

  • Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2018) MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol Environ Saf 148:995–1000

    Article  CAS  Google Scholar 

  • Bushnell B (2014) BBMap: a fast, accurate, splice-aware aligner (LBNL-7065E). Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). https://www.osti.gov/biblio/1241166

  • Cadonic IG, Ikert H, Craig PM (2020) Acute air exposure modulates the microRNA abundance in stress responsive tissues and circulating extracellular vesicles in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol Part D: Genom Proteom 34:100661

  • Cardona E, Guyomar C, Desvignes T, Montfort J, Guendouz S, Postlethwait JH, Skiba-Cassy S, Bobe J (2021) Circulating miRNA repertoire as a biomarker of metabolic and reproductive states in rainbow trout. BMC Biol 19:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L, Bobe J, Skiba-Cassy S (2022) Tissue origin of circulating microRNAs and their response to nutritional and environmental stress in rainbow trout (Oncorhynchus mykiss). Sci Total Environ 853:158584

  • Cerqueira M, Millot S, Felix A, Silva T, Oliveira GA, Oliveira CCV, Rey S, MacKenzie S, Oliveira R (2020) Cognitive appraisal in fish: stressor predictability modulates the physiological and neurobehavioural stress response in sea bass. Proc R Soc B: Biol Sci 287(1923), Article 1923. https://doi.org/10.1098/rspb.2019.2922

  • Chatain B, Chavanne H (2009) La génétique du bar (Dicentrarchus labrax L.). Agriculture 18:249–255

  • Chaturvedi A, Raeymaekers JAM, Volckaert FAM (2014) Computational identification of miRNAs, their targets and functions in three-spined stickleback (Gasterosteus aculeatus). Mol Ecol Resour 14:768–777

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen J, Shen Y, Bi Y, Hou W, Pan G, Wu X (2019) Transcriptional responses to low-salinity stress in the gills of adult female Portunus trituberculatus. Comp Biochem Physiol Part D: Genom Proteom 29:86–94

    CAS  Google Scholar 

  • Chen Y, Sun F, Zhang L, Zhou J, Hou J (2021) MiR-499a inhibits the proliferation and apoptosis of prostate cancer via targeting UBE2V2. World J Surg Oncol 19:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Desvignes T, Batzel P, Sydes J, Eames BF, Postlethwait JH (2019) miRNA analysis with Prost! Reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish. Sci Rep 9:3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran BO, da S, Dal-Pai-Silva M, Garcia de la Serrana D (2020) Rainbow trout slow myoblast cell culture as a model to study slow skeletal muscle, and the characterization of mir-133 and mir-499 families as a case study. J Exp Biol 223(2):jeb216390. https://doi.org/10.1242/jeb.216390

  • Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW (2011) Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One 6(6):e20769. https://doi.org/10.1371/journal.pone.0020769

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  • Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, Montfort J, Cam AL, Siegel A, Bobe J, Thermes V (2018) MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet 14(9):e1007593. https://doi.org/10.1371/journal.pgen.1007593

  • Geffroy B, Besson M, Sánchez-Baizán N, Clota F, Goikoetxea A, Sadoul B, Ruelle F, Blanc M-O, Parrinello H, Hermet S (2021) Unraveling the genotype by environment interaction in a thermosensitive fish with a polygenic sex determination system. Proc Nat Acad Sci 118(50):e2112660118. https://doi.org/10.1073/pnas.2112660118

  • Geffroy B, Guilbaud F, Amilhat E, Beaulaton L, Vignon M, Huchet E, Rives J, Bobe J, Fostier A, Guiguen Y, Bardonnet A (2016) Sexually dimorphic gene expressions in eels: Useful markers for early sex assessment in a conservation context. Sci Rep 6:34041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentlema, RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, … Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10), R80

  • Gu Y, Zhang L, Chen X (2014) Differential expression analysis of Paralichthys olivaceus microRNAs in adult ovary and testis by deep sequencing. Gen Comp Endocrinol 204:181–184

    Article  CAS  PubMed  Google Scholar 

  • Ikert H, Lynch MDJ, Doxey AC, Giesy JP, Servos MR, Katzenback B, Craig PM (2021) High throughput sequencing of microRNA in rainbow trout plasma, mucus, and surrounding water following acute stress. Front Physiol 11:1821–1838

    Article  Google Scholar 

  • Jing J, Wu J, Liu W, Xiong S, Ma W, Zhang J, Wang W, Gui J-F, Mei J (2014) Sex-biased miRNAs in gonad and their potential roles for testis development in yellow catfish. PLoS One 9(9):e107946. https://doi.org/10.1371/journal.pone.0107946

  • Juanchich A, Bardou P, Rué O, Gabillard J-C, Gaspin C, Bobe J, Guiguen Y (2016) Characterization of an extensive rainbow trout miRNA transcriptome by next generation sequencing. BMC Genom 17:1–12

    Article  Google Scholar 

  • Kabirizadeh S, Azadeh M, Mirhosseini M, Ghaedi K, Mesrian Tanha H (2016) The SNP rs3746444 within mir-499a is associated with breast cancer risk in Iranian population. J Cell Immunother 2:95–97

    Article  Google Scholar 

  • Kaitetzidou E, Xiang J, Antonopoulou E, Tsigenopoulos CS, Sarropoulou E (2015) Dynamics of gene expression patterns during early development of the European seabass (Dicentrarchus labrax). Physiol Genom 47:158–169

    Article  CAS  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Lai KP, Li J-W, Tse AC-K, Chan T-F, Wu RS-S (2016) Hypoxia alters steroidogenesis in female marine medaka through miRNAs regulation. Aquat Toxicol 172:1–8

    Article  CAS  PubMed  Google Scholar 

  • Li S-C, Chan W-C, Ho M-R, Tsai K-W, Hu L-Y, Lai C-H, Hsu C-N, Hwang P-P, Lin W (2010) Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genom 11:S8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540–1540

    Article  CAS  PubMed  Google Scholar 

  • Lin C-Y, Chiang C-Y, Tsai H-J (2016) Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci 23:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yu H, Yu Y, Bao X, Zhou J, Zeng W, Peng Z, Yang Y, Duan N (2022) MiRNA and mRNA expression analysis reveals the effects of continuous heat stress on antibacterial responses to Aeromonas hydrophila lipopolysaccharide (LPS) in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 130:332–341

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

  • Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachtigall PG, Dias MC, Carvalho RF, Martins C, Pinhal D (2015) MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia. PLoS One 10(3):e0119804. https://doi.org/10.1371/journal.pone.0119804

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Package ‘vegan.’ Community Ecology Package, Version 2:1–295

    Google Scholar 

  • Oltra M, Vidal-Gil L, Maisto R, Sancho-Pelluz J, Barcia JM (2020) Oxidative stress-induced angiogenesis is mediated by miR-205-5p. J Cell Mol Med 24:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Papadaki M, Kaitetzidou E, Papadakis IE, Sfakianakis DG, Papandroulakis N, Mylonas CC, Sarropoulou E (2022) Temperature-biased miRNA expression patterns during European sea bass (Dicentrarchus labrax) development. Int J Mol Sci 23(19):11164 https://doi.org/10.3390/ijms231911164

  • Prunet P, Sturm A, Milla S (2006) Multiple corticosteroid receptors in fish: from old ideas to new concepts. Gen Comp Endocrinol 147:17–23

    Article  CAS  PubMed  Google Scholar 

  • Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J (2019) Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 76:441–451

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Zhu Y, Wu Y, Yuan C, Chen K, Li M (2018) Identification and expression analysis of microRNAs in medaka gonads. Gene 646:210–216

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raposo de Magalhães CSF, Cerqueira MAC, Schrama D, Moreira MJV, Boonanuntanasarn S, Rodrigues PML (2020) A proteomics and other omics approach in the context of farmed fish welfare and biomarker discovery. Rev Aquac 12:122–144

    Article  Google Scholar 

  • Raza SHA, Abdelnour SA, Alotaibi MA, AlGabbani Q, Naiel MAE, Shokrollahi B, Noreldin A E, Jahejo AR, Shah MA, Alagawany M, Zan L (2022) MicroRNAs mediated environmental stress responses and toxicity signs in teleost fish species. Aquaculture 546:737310. https://doi.org/10.1016/j.aquaculture.2021.737310

  • Sadoul B, Geffroy B (2019) Measuring cortisol, the major stress hormone in fishes. J Fish Biol 94(4):540–555

    Article  CAS  PubMed  Google Scholar 

  • Sadoul B, Alfonso S, Cousin X, Prunet P, Bégout M-L, Leguen I (2021) Global assessment of the response to chronic stress in European sea bass. Aquaculture 544:737072. https://doi.org/10.1016/j.aquaculture.2021.737072

  • Salem M, Xiao C, Womack J, Rexroad CE, Yao J (2010) A microRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol 12:410–429

    Article  CAS  Google Scholar 

  • Samaras A, Papandroulakis N, Costari M, Pavlidis M (2016) Stress and metabolic indicators in a relatively high (European sea bass, Dicentrarchus labrax) and a low (meagre, Argyrosomus regius) cortisol responsive species, in different water temperatures. Aquac Res 47:3501–3515

    Article  CAS  Google Scholar 

  • Schreck CB, Tort L (2016) The concept of stress in fish. In Fish physiology 35:1–34. Elsevier

  • Shen F, Chao Q, Cai Z, Zhang H, Wu J, Zhang J (2023) Expression, localization, and a regulated target gene (ccnd1) of miR-202-5p in the Japanese flounder gonads. Aquac Fish 8:267–273

    Article  Google Scholar 

  • Song C, Liu B, Xu P, Ge X, Li H, Tang Y, Su S (2021) MiR-144 is the epigenetic target for emodin to ameliorate oxidative stress induced by dietary oxidized fish oil via Nrf2 signaling in Wuchang bream, Megalobrama amblycephala. Aquaculture 534:736357. https://doi.org/10.1016/j.aquaculture.2021.736357

  • Tai Ahkin Chin JK, Freeman JL (2020) Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 7:559–570

    Article  Google Scholar 

  • Tang X-L, Xu M-J, Li Z-H, Pan Q, Fu J-H (2013) Effects of vitamin E on expressions of eight microRNAs in the liver of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 34:1470–1475

    Article  CAS  PubMed  Google Scholar 

  • Tao W, Sun L, Shi H, Cheng Y, Jiang D, Fu B, Conte MA, Gammerdinger WJ, Kocher TD, Wang D (2016) Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation. BMC Genom 17:328

    Article  Google Scholar 

  • Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V (2015) Challenges in using circulating miRNAs as cancer biomarkers. BioMed Res Int 2015:731479. https://doi.org/10.1155/2015/731479

  • Tine M, Kuhl H, Gagnaire P-A, Louro B, Desmarais E, Martins RS, Hecht J, Knaust F, Belkhir K, Klages S (2014) European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun 5:5770

    Article  CAS  PubMed  Google Scholar 

  • Tsalafouta A, Papandroulakis N, Pavlidis M (2015) Early life stress and effects at subsequent stages of development in European sea bass (D. labrax). Aquaculture 436:27–33

  • van Gelderen TA, Montfort J, Álvarez-Dios JA, Thermes V, Piferrer F, Bobe J, Ribas L (2022) Deciphering sex-specific miRNAs as heat-recorders in zebrafish. Sci Rep 12:18722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeputte M, Dupont-Nivet M, Chavanne H, Chatain B (2007) A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics 176:1049–1057

  • Vandeputte M, Gagnaire P, Allal F (2019) The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet 50:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeputte M, Porte JD, Auperin B, Dupont-Nivet M, Vergnet A, Valotaire C, Claireaux G, Prunet P, Chatain B (2016) Quantitative genetic variation for post-stress cortisol and swimming performance in growth-selected and control populations of European sea bass (Dicentrarchus labrax). Aquaculture 455:1–7

    Article  CAS  Google Scholar 

  • Wang F, Guo F, Ma W (2020) Abnormal expression of miR-1388-5p and its target spindlin-1 in female triploid rainbow trout (Oncorhynchus mykiss). Aquac Rep 18:100420. https://doi.org/10.1016/j.aqrep.2020.100420

  • Wang F, Yang Q, Zhao W-J, Du Q-Y, Chang Z-J (2019) Effects of short-time exposure to atrazine on miRNA expression profiles in the gonad of common carp (Cyprinus carpio). BMC Genom 20:587

  • Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231:25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ono Y, Tan SC, Chai RJ, Parkin C, Ingham PW (2011) Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo. Development 138:4399–4404

    Article  CAS  PubMed  Google Scholar 

  • Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68

    Article  CAS  Google Scholar 

  • Xu Z, Chen J, Li X, Ge J, Pan J, Xu X (2013) Identification and characterization of microRNAs in channel catfish (Ictalurus punctatus) by using Solexa sequencing technology. PLoS One 8(1):e54174. https://doi.org/10.1371/journal.pone.0054174

  • Yang F, Guan J, Li R, Li X, Niu J, Shang R, Qi J, Wang X (2018) MiR-1388 regulates the expression of nectin2l in Paralichthys olivaceus. Comp Biochem Physiol Part D: Genom Proteom 28:9–16

    CAS  Google Scholar 

  • Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: J Integr Biol 16:284–287

  • Zhang J, Liu W, Jin Y, Jia P, Jia K, Yi M (2017) MiR-202-5p is a novel germ plasm-specific microRNA in zebrafish. Sci Rep 7(1):7055 https://doi.org/10.1038/s41598-017-07675-x

  • Zhang L, Jiang H, Zhang Y, Wang C, Xia X, Sun Y (2020) GR silencing impedes the progression of castration-resistant prostate cancer through the JAG1/NOTCH2 pathway via up-regulation of microRNA-143-3p. Cancer Biomarkers 28:483–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao N, Jia L, He X, Zhang B (2021) Sex bias miRNAs in Cynoglossus semilaevis could play a role in transgenerational inheritance. Comp Biochem Physiol Part D: Genom Proteom 39:100853. https://doi.org/10.1016/j.cbd.2021.100853

Download references

Acknowledgements

The authors would like to acknowledge the team from Station Ifremer Palavas-les-Flots (France) and the team from Aquanord Gloria Maris (France) for the help in different sampling. The authors also thank Pierre Lopez for the sea bass infographic.

Funding

This work was funded by a grant from the European Maritime Affairs and Fisheries Fund (MiRNAs sex & stress, MiSS no. 20-00070).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Benjamin Geffroy and Camille Houdelet; methodology: Benjamin Geffroy, Camille Houdelet, Sophie Hermet, François Ruelle, Gilbert Dutto, and Aline Bajek. Formal analysis: Eva Blondeau-Bidet, Mathilde Estevez-Villar, and Xavier Mialhe. Writing original draft: Camille Houdelet and Benjamin Geffroy. Writing—review and editing: Benjamin Geffroy, Camille Houdelet, Eva Blondeau-Bidet, and Julien Bobe. Funding acquisition: Benjamin Geffroy. All authors reviewed the manuscript.

Corresponding author

Correspondence to Benjamin Geffroy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houdelet, C., Blondeau-Bidet, E., Estevez-Villar, M. et al. Circulating MicroRNAs Indicative of Sex and Stress in the European Seabass (Dicentrarchus labrax): Toward the Identification of New Biomarkers. Mar Biotechnol 25, 749–762 (2023). https://doi.org/10.1007/s10126-023-10237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10237-0

Keywords

Navigation