Skip to main content

Advertisement

Log in

Hyponatraemia and hypernatraemia: Disorders of Water Balance in Neurosurgery

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Disorders of tonicity, hyponatraemia and hypernatraemia, are common in neurosurgical patients. Tonicity is sensed by the circumventricular organs while the volume state is sensed by the kidney and peripheral baroreceptors; these two signals are integrated in the hypothalamus. Volume is maintained through the renin-angiotensin-aldosterone axis, while tonicity is defended by arginine vasopressin (antidiuretic hormone) and the thirst response. Edelman found that plasma sodium is dependent on the exchangeable sodium, potassium and free-water in the body. Thus, changes in tonicity must be due to disproportionate flux of these species in and out of the body. Sodium concentration may be measured by flame photometry and indirect, or direct, ion-sensitive electrodes. Only the latter method is not affected by changes in plasma composition. Classification of hyponatraemia by the volume state is imprecise. We compare the tonicity of the urine, given by the sodium potassium sum, to that of the plasma to determine the renal response to the dysnatraemia. We may then assess the activity of the renin-angiotensin-aldosterone axis using urinary sodium and fractional excretion of sodium, urate or urea. Together, with clinical context, these help us determine the aetiology of the dysnatraemia. Symptomatic individuals and those with intracranial catastrophes require prompt treatment and vigilant monitoring. Otherwise, in the absence of hypovolaemia, free-water restriction and correction of any reversible causes should be the mainstay of treatment for hyponatraemia. Hypernatraemia should be corrected with free-water, and concurrent disorders of volume should be addressed. Monitoring for overcorrection of hyponatraemia is necessary to avoid osmotic demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aditya S, Rattan A (2012) Vaptans: a new option in the management of hyponatremia. Int J Appl Basic Med Res 2:77–78. https://doi.org/10.4103/2229-516X.106347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agha A, Rogers B, Mylotte D, Taleb F, Tormey W, Phillips J, Thompson CJ (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol 60:584–591

    Article  CAS  Google Scholar 

  3. Agha A, Thornton E, O'Kelly P, Tormey W, Phillips J, Thompson CJ (2004) Posterior pituitary dysfunction after traumatic brain injury. J Clin Endocrinol Metab 89:5987–5992. https://doi.org/10.1210/jc.2004-1058

    Article  CAS  PubMed  Google Scholar 

  4. Agha A, Sherlock M, Phillips J, Tormey W, Thompson CJ (2005) The natural history of post-traumatic neurohypophysial dysfunction. Eur J Endocrinol 152:371–377. https://doi.org/10.1530/eje.1.01861

    Article  CAS  PubMed  Google Scholar 

  5. Aimaretti G, Ambrosio MR, Di Somma C, Fusco A, Cannavo S, Gasperi M, Scaroni C, De Marinis L, Benvenga S, degli Uberti EC, Lombardi G, Mantero F, Martino E, Giordano G, Ghigo E (2004) Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: screening study at 3 months after the brain injury. Clin Endocrinol 61:320–326

    Article  CAS  Google Scholar 

  6. Aiyagari V, Deibert E, Diringer MN (2006) Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care 21:163–172. https://doi.org/10.1016/j.jcrc.2005.10.002

    Article  PubMed  Google Scholar 

  7. Ajlan AM, Abdulqader SB, Achrol AS, Aljamaan Y, Feroze AH, Katznelson L, Harsh GR (2018) Diabetes insipidus following endoscopic transsphenoidal surgery for pituitary adenoma. J Neurol Surg B 79:117–122

    Article  Google Scholar 

  8. Alshayeb HM, Showkat A, Babar F, Mangold T, Wall BM (2011) Severe hypernatremia correction rate and mortality in hospitalized patients. Am J Med Sci 341:356–360. https://doi.org/10.1097/MAJ.0b013e31820a3a90

    Article  PubMed  Google Scholar 

  9. Anderson RJ, Chung HM, Kluge R, Schrier RW (1985) Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med 102:164–168

    Article  CAS  Google Scholar 

  10. Andreoli DC, Whittier WL (2017) Reset osmostat: the result of chronic desmopressin abuse? Am J Kidney Dis 69:853–857. https://doi.org/10.1053/j.ajkd.2016.12.009

    Article  PubMed  Google Scholar 

  11. Annoni F, Fontana V, Brimioulle S, Creteur J, Vincent J-L, Taccone FS (2017) Early effects of enteral urea on intracranial pressure in patients with acute brain injury and hyponatremia. J Neurosurg Anesthesiol 29:400–405. https://doi.org/10.1097/ANA.0000000000000340

    Article  PubMed  Google Scholar 

  12. Arampatzis S, Frauchiger B, Fiedler GM, Leichtle AB, Buhl D, Schwarz C, Funk GC, Zimmermann H, Exadaktylos AK, Lindner G (2012) Characteristics, symptoms, and outcome of severe dysnatremias present on hospital admission. Am J Med 125:1125.e1–1125.e7. https://doi.org/10.1016/j.amjmed.2012.04.041

    Article  CAS  Google Scholar 

  13. Arieff AI, Llach F, Massry SG (1976) Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine (Baltimore) 55:121–129

    Article  CAS  Google Scholar 

  14. Berendes E, Walter M, Cullen P, Prien T, Van Aken H, Horsthemke J, Schulte M, Wild von K, Scherer R (1997) Secretion of brain natriuretic peptide in patients with aneurysmal subarachnoid haemorrhage. Lancet 349:245–249. https://doi.org/10.1016/s0140-6736(96)08093-2

    Article  CAS  PubMed  Google Scholar 

  15. Berghuis B, van der Palen J, de Haan G-J, Lindhout D, Koeleman BPC, Sander JW (2017) Carbamazepine- and oxcarbazepine-induced hyponatremia in people with epilepsy. Epilepsia 58:1227–1233. https://doi.org/10.1111/epi.13777

    Article  CAS  PubMed  Google Scholar 

  16. Biggins SW, Rodriguez HJ, Bacchetti P, Bass NM, Roberts JP, Terrault NA (2005) Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology 41:32–39. https://doi.org/10.1002/hep.20517

    Article  CAS  PubMed  Google Scholar 

  17. Bohl MA, Ahmad S, Jahnke H, Shepherd D, Knecht L, White WL, Little AS (2015) Delayed hyponatremia is the most common cause of 30-day unplanned readmission after transsphenoidal surgery for pituitary tumors. Neurosurgery 78:84–90

    Article  Google Scholar 

  18. Boscoe A, Paramore C, Verbalis JG (2006) Cost of illness of hyponatremia in the United States. Cost Eff Resour Alloc 4:10. https://doi.org/10.1186/1478-7547-4-10

    Article  PubMed  PubMed Central  Google Scholar 

  19. Castle-Kirszbaum M, Goldschlager T, Ho B, Wang YY, King J (2018) Twelve cases of pituitary metastasis: a case series and review of the literature. Pituitary 33:127–473. https://doi.org/10.1007/s11102-018-0899-x

    Article  Google Scholar 

  20. Cesar KR, Magaldi AJ (1999) Thiazide induces water absorption in the inner medullary collecting duct of normal and Brattleboro rats. Am J Phys 277:F756–F760. https://doi.org/10.1152/ajprenal.1999.277.5.F756

    Article  CAS  Google Scholar 

  21. Chapman N, Dobson J, Wilson S, Dahlof B, Sever PS, Wedel H, Poulter NR (2007) Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension 49:839–845. https://doi.org/10.1161/01.HYP.0000259805.18468.8c

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan K, Pattharanitima P, Patel N, Duffy A, Saha A, Chaudhary K, Debnath N, Van Vleck T, Chan L, Nadkarni GN, Coca SG (2019) Rate of correction of hypernatremia and health outcomes in critically ill patients. Clin J Am Soc Nephrol 14:656–663. https://doi.org/10.2215/CJN.10640918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chin HX, Quek T, Leow M (2018) Central diabetes insipidus unmasked by corticosteroid therapy for cerebral metastases: beware the case with pituitary involvement and hypopituitarism. J R Coll Physicians Edinb 47:247–249. https://doi.org/10.4997/JRCPE.2017.307

    Article  Google Scholar 

  24. Christ-Crain M, Bichet DG, Fenske WK, Goldman MB, Rittig S, Verbalis JG, Verkman AS (2019) Diabetes insipidus. Nat Rev Dis Primers 5:54–20. https://doi.org/10.1038/s41572-019-0103-2

    Article  PubMed  Google Scholar 

  25. Chung HM, Kluge R, Schrier RW, Anderson RJ (1987) Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med 83:905–908

    Article  CAS  Google Scholar 

  26. Cote M, Salzman KL, Sorour M, Couldwell WT (2014) Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging. J Neurosurg 120:357–362. https://doi.org/10.3171/2013.11.JNS131320

    Article  PubMed  Google Scholar 

  27. Cote DJ, Alzarea A, Acosta MA, Hulou MM, Huang KT, Almutairi H, Alharbi A, Zaidi HA, Algrani M, Alatawi A, Mekary RA, Smith TR (2016) Predictors and rates of delayed symptomatic hyponatremia after transsphenoidal surgery: a systematic review [corrected]. World Neurosurg 88:1–6. https://doi.org/10.1016/j.wneu.2016.01.022

    Article  PubMed  Google Scholar 

  28. Crowley RK, Sherlock M, Agha A, Smith D, Thompson CJ (2007) Clinical insights into adipsic diabetes insipidus: a large case series. Clin Endocrinol 66:475–482. https://doi.org/10.1111/j.1365-2265.2007.02754.x

    Article  CAS  Google Scholar 

  29. Cusick JF, Hagen TC, Findling JW (1984) Inappropriate secretion of antidiuretic hormone after transsphenoidal surgery for pituitary tumors. N Engl J Med 311:36–38. https://doi.org/10.1056/NEJM198407053110107

    Article  CAS  PubMed  Google Scholar 

  30. D’Orazio P, Miller WG, Myers GL, Doumas BT (1995) Standardization of sodium and potassium ion-selective electrode systems to the flame photometric reference method: approved standard

  31. Decaux G, Andres C, Kengne FG, Soupart A (2010) Treatment of euvolemic hyponatremia in the intensive care unit by urea. Crit Care 14:R184. https://doi.org/10.1186/cc9292

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dimeski G, Morgan TJ, Presneill JJ, Venkatesh B (2012) Disagreement between ion selective electrode direct and indirect sodium measurements: estimation of the problem in a tertiary referral hospital. J Crit Care 27:326.e9–326.16. https://doi.org/10.1016/j.jcrc.2011.11.003

    Article  CAS  Google Scholar 

  33. Dorhout Mees SM, Hoff RG, Rinkel GJE, Algra A, van den Bergh WM (2011) Brain natriuretic peptide concentrations after aneurysmal subarachnoid hemorrhage: relationship with hypovolemia and hyponatremia. Neurocrit Care 14:176–181. https://doi.org/10.1007/s12028-011-9504-0

    Article  CAS  PubMed  Google Scholar 

  34. Eagles ME, Tso MK, Macdonald RL (2018) Significance of fluctuations in serum sodium levels following aneurysmal subarachnoid hemorrhage: an exploratory analysis. J Neurosurg 131:1–6. https://doi.org/10.3171/2018.3.JNS173068

    Article  Google Scholar 

  35. Edelman IS, Leibman J, O’Meara MP, Birkenfeld LW (1958) Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest 37:1236–1256

    Article  CAS  Google Scholar 

  36. Espiner EA, Leikis R, Ferch RD, MacFarlane MR, Bonkowski JA, Frampton CM, Richards AM (2002) The neuro-cardio-endocrine response to acute subarachnoid haemorrhage. Clin Endocrinol 56:629–635. https://doi.org/10.1046/j.1365-2265.2002.01285.x

    Article  CAS  Google Scholar 

  37. Fang C, Mao J, Dai Y, Xia Y, Fu H, Chen Y, Wang Y, Liu A (2010) Fluid management of hypernatraemic dehydration to prevent cerebral oedema: a retrospective case control study of 97 children in China. J Paediatr Child Health 46:301–303. https://doi.org/10.1111/j.1440-1754.2010.01712.x

    Article  PubMed  Google Scholar 

  38. Fenske W, Störk S, Koschker A-C, Blechschmidt A, Lorenz D, Wortmann S, Allolio B (2008) Value of fractional uric acid excretion in differential diagnosis of hyponatremic patients on diuretics. J Clin Endocrinol Metab 93:2991–2997. https://doi.org/10.1210/jc.2008-0330

    Article  CAS  PubMed  Google Scholar 

  39. Fenske WK, Christ-Crain M, Hörning A, Simet J, Szinnai G, Fassnacht M, Rutishauser J, Bichet DG, Störk S, Allolio B (2014) A copeptin-based classification of the osmoregulatory defects in the syndrome of inappropriate antidiuresis. J Am Soc Nephrol 25:2376–2383. https://doi.org/10.1681/ASN.2013080895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fenton RA, Chou C-L, Sowersby H, Smith CP, Knepper MA (2006) Gamble’s ‘economy of water’ revisited: studies in urea transporter knockout mice. Am J Physiol Ren Physiol 291:F148–F154. https://doi.org/10.1152/ajprenal.00348.2005

    Article  CAS  Google Scholar 

  41. Fernandez SJ, Barakat I, Ziogas J, Frugier T, Stylli SS, Laidlaw JD, Kaye AH, Adamides AA (2018) Association of copeptin, a surrogate marker of arginine vasopressin, with cerebral vasospasm and delayed ischemic neurologic deficit after aneurysmal subarachnoid hemorrhage. J Neurosurg 130:1–7. https://doi.org/10.3171/2017.10.JNS17795

    Article  Google Scholar 

  42. Fortgens P, Pillay TS (2011) Pseudohyponatremia revisited: a modern-day pitfall. Arch Pathol Lab Med 135:516–519. https://doi.org/10.1043/2010-0018-RS.1

    Article  PubMed  Google Scholar 

  43. Fraser CL, Arieff AI (1997) Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med 102:67–77

    Article  CAS  Google Scholar 

  44. Gamble JL, McKhann CF, Butler AM, Tuthill E (1934) An economy of water in renal function referable to urea. Am J Phys 109:139–154. https://doi.org/10.1152/ajplegacy.1934.109.1.139

    Article  CAS  Google Scholar 

  45. Ganong CA, Kappy MS (1993) Cerebral salt wasting in children. The need for recognition and treatment. Am J Dis Child 147:167–169. https://doi.org/10.1001/archpedi.1993.02160260057022

    Article  CAS  PubMed  Google Scholar 

  46. Gill G, Huda B, Boyd A, Skagen K, Wile D, Watson I, van Heyningen C (2006) Characteristics and mortality of severe hyponatraemia--a hospital-based study. Clin Endocrinol 65:246–249. https://doi.org/10.1111/j.1365-2265.2006.02583.x

    Article  Google Scholar 

  47. Hamrahian AH, Oseni TS, Arafah BM (2004) Measurements of serum free cortisol in critically ill patients. N Engl J Med 350:1629–1638. https://doi.org/10.1056/NEJMoa020266

    Article  CAS  PubMed  Google Scholar 

  48. Hanna RM, Yang W-T, Lopez EA, Riad JN, Wilson J (2016) The utility and accuracy of four equations in predicting sodium levels in dysnatremic patients. Clin Kidney J 9:530–539. https://doi.org/10.1093/ckj/sfw034

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hannon MJ, Finucane FM, Sherlock M, Agha A, Thompson CJ (2012) Clinical review: disorders of water homeostasis in neurosurgical patients. J Clin Endocrinol Metab 97:1423–1433. https://doi.org/10.1210/jc.2011-3201

    Article  CAS  PubMed  Google Scholar 

  50. Hannon MJ, Behan LA, O'Brien MMC, Tormey W, Ball SG, Javadpour M, Javadpur M, Sherlock M, Thompson CJ (2014) Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting. J Clin Endocrinol Metab 99:291–298. https://doi.org/10.1210/jc.2013-3032

    Article  CAS  PubMed  Google Scholar 

  51. Harrigan MR (1996) Cerebral salt wasting syndrome: a review. Neurosurgery 38:152–160. https://doi.org/10.1097/00006123-199601000-00035

    Article  CAS  PubMed  Google Scholar 

  52. Hasan D, Wijdicks EF, Vermeulen M (1990) Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol 27:106–108. https://doi.org/10.1002/ana.410270118

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi Y, Aida Y, Sasagawa Y, Oishi M, Kita D, Tachibana O, Ueda F, Nakada M (2018) Delayed occurrence of diabetes insipidus after transsphenoidal surgery with radiologic evaluation of the pituitary stalk on magnetic resonance imaging. World Neurosurg 110:e1072–e1077. https://doi.org/10.1016/j.wneu.2017.11.169

    Article  PubMed  Google Scholar 

  54. Heinbecker P, White HL (1939) The role of the pituitary gland in water balance. Ann Surg 110:1037–1049

    Article  CAS  Google Scholar 

  55. Hensen J, Henig A, Fahlbusch R, Meyer M, Boehnert M, Buchfelder M (1999) Prevalence, predictors and patterns of postoperative polyuria and hyponatraemia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol 50:431–439

    Article  CAS  Google Scholar 

  56. Hix JK, Silver S, Sterns RH (2011) Diuretic-associated hyponatremia. Semin Nephrol 31:553–566. https://doi.org/10.1016/j.semnephrol.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  57. Hiyama TY, Utsunomiya AN, Matsumoto M, Fujikawa A, Lin C-H, Hara K, Kagawa R, Okada S, Kobayashi M, Ishikawa M, Anzo M, Cho H, Takayasu S, Nigawara T, Daimon M, Sato T, Terui K, Ito E, Noda M (2017) Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pathol 27:323–331. https://doi.org/10.1111/bpa.12409

    Article  CAS  PubMed  Google Scholar 

  58. Hline SS, Pham P-TT, Pham P-TT, Aung MH, Pham P-MT, Pham P-CT (2008) Conivaptan: a step forward in the treatment of hyponatremia? Ther Clin Risk Manag 4:315–326

    Article  CAS  Google Scholar 

  59. Hughes F, Mythen M, Montgomery H (2018) The sensitivity of the human thirst response to changes in plasma osmolality: a systematic review. Perioper Med (Lond) 7:1–1632. https://doi.org/10.1186/s13741-017-0081-4

    Article  Google Scholar 

  60. Intravooth T, Staack AM, Juerges K, Stockinger J, Steinhoff BJ (2018) Antiepileptic drugs-induced hyponatremia: review and analysis of 560 hospitalized patients. Epilepsy Res 143:7–10. https://doi.org/10.1016/j.eplepsyres.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  61. Isotani E, Suzuki R, Tomita K, Hokari M, Monma S, Marumo F, Hirakawa K (1994) Alterations in plasma concentrations of natriuretic peptides and antidiuretic hormone after subarachnoid hemorrhage. Stroke 25:2198–2203. https://doi.org/10.1161/01.str.25.11.2198

    Article  CAS  PubMed  Google Scholar 

  62. Jovanovich AJ, Berl T (2012) Where vaptans do and do not fit in the treatment of hyponatremia. Kidney Int 83:563–567. https://doi.org/10.1038/ki.2012.402

    Article  CAS  PubMed  Google Scholar 

  63. Juul R, Edvinsson L, Ekman R, Frederiksen TA, Unsgård G, Gisvold SE (1990) Atrial natriuretic peptide-LI following subarachnoid haemorrhage in man. Acta Neurochir 106:18–23. https://doi.org/10.1007/bf01809328

    Article  CAS  PubMed  Google Scholar 

  64. Kao L, Al-Lawati Z, Vavao J, Steinberg GK, Katznelson L (2009) Prevalence and clinical demographics of cerebral salt wasting in patients with aneurysmal subarachnoid hemorrhage. Pituitary 12:347–351. https://doi.org/10.1007/s11102-009-0188-9

    Article  PubMed  Google Scholar 

  65. Khurana VG, Wijdicks EFM, Heublein DM, McClelland RL, Meyer FB, Piepgras DG, Burnett JC (2004) A pilot study of dendroaspis natriuretic peptide in aneurysmal subarachnoid hemorrhage. Neurosurgery 55:69–75– discussion 75–6. https://doi.org/10.1227/01.neu.0000126877.10254.4c

    Article  PubMed  Google Scholar 

  66. Klose M, Brennum J, Poulsgaard L, Kosteljanetz M, Wagner A, Feldt-Rasmussen U (2010) Hypopituitarism is uncommon after aneurysmal subarachnoid haemorrhage. Clin Endocrinol 73:95–101. https://doi.org/10.1111/j.1365-2265.2010.03791.x

    Article  Google Scholar 

  67. Lanterna LA, Spreafico V, Gritti P, Prodam F, Signorelli A, Biroli F, Aimaretti G (2013) Hypocortisolism in noncomatose patients during the acute phase of subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 22:e189–e196. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.11.002

    Article  PubMed  Google Scholar 

  68. le Roux CW, Chapman GA, Kong WM, Dhillo WS, Jones J, Alaghband-Zadeh J (2003) Free cortisol index is better than serum total cortisol in determining hypothalamic-pituitary-adrenal status in patients undergoing surgery. J Clin Endocrinol Metab 88:2045–2048. https://doi.org/10.1210/jc.2002-021532

    Article  CAS  PubMed  Google Scholar 

  69. Ledingham JG, Crowe MJ, Forsling ML, Phillips PA, Rolls BJ (1987) Effects of aging on vasopressin secretion, water excretion, and thirst in man. Kidney Int Suppl 21:S90–S92

    CAS  PubMed  Google Scholar 

  70. Lee WH, Packer M (1986) Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients with severe chronic heart failure. Circulation 73:257–267. https://doi.org/10.1161/01.cir.73.2.257

    Article  CAS  PubMed  Google Scholar 

  71. Lee P, Jones GRD, Center JR (2008) Successful treatment of adult cerebral salt wasting with fludrocortisone. Arch Intern Med 168:325–326. https://doi.org/10.1001/archinternmed.2007.126

    Article  PubMed  Google Scholar 

  72. Leier CV, Dei Cas L, Metra M (1994) Clinical relevance and management of the major electrolyte abnormalities in congestive heart failure: hyponatremia, hypokalemia, and hypomagnesemia. Am Heart J 128:564–574. https://doi.org/10.1016/0002-8703(94)90633-5

    Article  CAS  PubMed  Google Scholar 

  73. Leonard J, Garrett RE, Salottolo K, Slone DS, Mains CW, Carrick MM, Bar-Or D (2015) Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med 23:98

    Article  Google Scholar 

  74. Lester MC, Nelson PB (1981) Neurological aspects of vasopressin release and the syndrome of inappropriate secretion of antidiuretic hormone. Neurosurgery 8:735–740. https://doi.org/10.1227/00006123-198106000-00020

    Article  CAS  PubMed  Google Scholar 

  75. Levine JP, Stelnicki E, Weiner HL, Bradley JP, McCarthy JG (2001) Hyponatremia in the postoperative craniofacial pediatric patient population: a connection to cerebral salt wasting syndrome and management of the disorder. Plast Reconstr Surg 108:1501–1508. https://doi.org/10.1097/00006534-200111000-00009

    Article  CAS  PubMed  Google Scholar 

  76. Levy GB (1981) Determination of sodium with ion-selective electrodes. Clin Chem 27:1435–1438

    Article  CAS  Google Scholar 

  77. Lindheimer MD, Barron WM, Davison JM (1989) Osmoregulation of thirst and vasopressin release in pregnancy. Am J Phys 257:F159–F169. https://doi.org/10.1152/ajprenal.1989.257.2.F159

    Article  CAS  Google Scholar 

  78. Lindner G, Schwarz C, Kneidinger N, Kramer L, Oberbauer R, Druml W (2008) Can we really predict the change in serum sodium levels? An analysis of currently proposed formulae in hypernatraemic patients. Nephrol Dial Transplant 23:3501–3508. https://doi.org/10.1093/ndt/gfn476

    Article  CAS  PubMed  Google Scholar 

  79. Lipsett MB, Maclean JP, West CD, Li MC, Pearson OH (1956) An analysis of the polyuria induced by hypophysectomy in man. J Clin Endocrinol Metab 16:183–195. https://doi.org/10.1210/jcem-16-2-183

    Article  CAS  PubMed  Google Scholar 

  80. Little AS, Kelly DF, White WL, Gardner PA, Fernandez-Miranda JC, Chicoine MR, Barkhoudarian G, Chandler JP, Prevedello DM, Liebelt BD, Sfondouris J, Mayberg MR, TRANSSPHER Study Group (2019) Results of a prospective multicenter controlled study comparing surgical outcomes of microscopic versus fully endoscopic transsphenoidal surgery for nonfunctioning pituitary adenomas: the transsphenoidal extent of resection (TRANSSPHER) study. J Neurosurg 62:1–11. https://doi.org/10.3171/2018.11.JNS181238

    Article  Google Scholar 

  81. Lockett J, Berkman KE, Dimeski G, Russell AW, Inder WJ (2019) Urea treatment in fluid restriction-refractory hyponatraemia. Clin Endocrinol 90:630–636. https://doi.org/10.1111/cen.13930

    Article  CAS  Google Scholar 

  82. Lohani S, Devkota UP (2011) Hyponatremia in patients with traumatic brain injury: etiology, incidence, and severity correlation. World Neurosurg 76:355–360. https://doi.org/10.1016/j.wneu.2011.03.042

    Article  PubMed  Google Scholar 

  83. Lohr JW (1994) Osmotic demyelination syndrome following correction of hyponatremia: association with hypokalemia. Am J Med 96:408–413

    Article  CAS  Google Scholar 

  84. Lord AS, Fernandez L, Schmidt JM, Mayer SA, Claassen J, Lee K, Connolly ES, Badjatia N (2012) Effect of rebleeding on the course and incidence of vasospasm after subarachnoid hemorrhage. Neurology 78:31–37. https://doi.org/10.1212/WNL.0b013e31823ed0a4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu X, Wang X (2017) Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf 16:77–87. https://doi.org/10.1080/14740338.2017.1248399

    Article  CAS  PubMed  Google Scholar 

  86. Lu DC, Binder DK, Chien B, Maisel A, Manley GT (2008) Cerebral salt wasting and elevated brain natriuretic peptide levels after traumatic brain injury: 2 case reports. Surg Neurol 69:226–229. https://doi.org/10.1016/j.surneu.2007.02.051

    Article  PubMed  Google Scholar 

  87. Maesaka JK, Fishbane S (1998) Regulation of renal urate excretion: a critical review. Am J Kidney Dis 32:917–933. https://doi.org/10.1016/s0272-6386(98)70067-8

    Article  CAS  PubMed  Google Scholar 

  88. Maesaka JK, Imbriano LJ, Ali NM, Ilamathi E (2009) Is it cerebral or renal salt wasting? Kidney Int 76:934–938. https://doi.org/10.1038/ki.2009.263

    Article  PubMed  Google Scholar 

  89. Maghnie M, Ghirardello S, De Bellis A, Di Iorgi N, Ambrosini L, Secco A, De Amici M, Tinelli C, Bellastella A, Lorini R (2006) Idiopathic central diabetes insipidus in children and young adults is commonly associated with vasopressin-cell antibodies and markers of autoimmunity. Clin Endocrinol 65:470–478. https://doi.org/10.1111/j.1365-2265.2006.02616.x

    Article  CAS  Google Scholar 

  90. Maimaitili A, Maimaitili M, Rexidan A, Lu J, Ajimu K, Cheng X, Luo K, Sailike D, Liu Y, Kaheerman K, Tang C, Zhang T (2013) Pituitary hormone level changes and hypxonatremia in aneurysmal subarachnoid hemorrhage. Exp Ther Med 5:1657–1662

    Article  Google Scholar 

  91. Mapa B, Taylor BES, Appelboom G, Bruce EM, Claassen J, Connolly ESJ (2016) Impact of hyponatremia on morbidity, mortality, and complications after aneurysmal subarachnoid hemorrhage: a systematic review. World Neurosurg 85:305–314. https://doi.org/10.1016/j.wneu.2015.08.054

    Article  PubMed  Google Scholar 

  92. Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 41:1774–1781

    Article  Google Scholar 

  93. Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178. https://doi.org/10.1378/chest.07-2331

    Article  PubMed  Google Scholar 

  94. Mistry AM, Mistry EA, Ganesh Kumar N, Froehler MT, Fusco MR, Chitale RV (2016) Corticosteroids in the management of hyponatremia, hypovolemia, and vasospasm in subarachnoid hemorrhage: a meta-analysis. Cerebrovasc Dis 42:263–271. https://doi.org/10.1159/000446251

    Article  CAS  PubMed  Google Scholar 

  95. Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J (2007) Hyponatremia in patients with traumatic brain injury: incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol 68:387–393. https://doi.org/10.1016/j.surneu.2006.11.052

    Article  PubMed  Google Scholar 

  96. Musch W, Thimpont J, Vandervelde D, Verhaeverbeke I, Berghmans T, Decaux G (1995) Combined fractional excretion of sodium and urea better predicts response to saline in hyponatremia than do usual clinical and biochemical parameters. Am J Med 99:348–355. https://doi.org/10.1016/s0002-9343(99)80180-6

    Article  CAS  PubMed  Google Scholar 

  97. Musch W, Hedeshi A, Decaux G (2004) Low sodium excretion in SIADH patients with low diuresis. Nephron Physiol 96:P11–P18. https://doi.org/10.1159/000075575

    Article  PubMed  Google Scholar 

  98. Nelson PB, Seif SM, Maroon JC, Robinson AG (1981) Hyponatremia in intracranial disease: perhaps not the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Neurosurg 55:938–941. https://doi.org/10.3171/jns.1981.55.6.0938

    Article  CAS  PubMed  Google Scholar 

  99. Nemergut EC, Zuo Z, Jane JA, Laws ER (2005) Predictors of diabetes insipidus after transsphenoidal surgery: a review of 881 patients. J Neurosurg 103:448–454. https://doi.org/10.3171/jns.2005.103.3.0448

    Article  PubMed  Google Scholar 

  100. Nguyen MK, Kurtz I (2004) Determinants of plasma water sodium concentration as reflected in the Edelman equation: role of osmotic and Gibbs-Donnan equilibrium. Am J Physiol Ren Physiol 286:F828–F837. https://doi.org/10.1152/ajprenal.00393.2003

    Article  CAS  Google Scholar 

  101. Nguyen MK, Kurtz I (2005) Derivation of a new formula for calculating urinary electrolyte-free water clearance based on the Edelman equation. Am J Physiol Ren Physiol 288:F1–F7. https://doi.org/10.1152/ajprenal.00259.2004

    Article  CAS  Google Scholar 

  102. Palevsky PM, Bhagrath R, Greenberg A (1996) Hypernatremia in hospitalized patients. Ann Intern Med 124:197–203

    Article  CAS  Google Scholar 

  103. Palmer BF (2000) Hyponatraemia in a neurosurgical patient: syndrome of inappropriate antidiuretic hormone secretion versus cerebral salt wasting. Nephrol Dial Transplant 15:262–268

    Article  CAS  Google Scholar 

  104. Parenti G, Cecchi PC, Ragghianti B, Schwarz A, Ammannati F, Mennonna P, Di Rita A, Gallina P, Di Lorenzo N, Innocenti P, Forti G, Peri A (2011) Evaluation of the anterior pituitary function in the acute phase after spontaneous subarachnoid hemorrhage. J Endocrinol Investig 34:361–365. https://doi.org/10.1007/BF03347460

    Article  CAS  Google Scholar 

  105. Prete A, Corsello SM, Salvatori R (2017) Current best practice in the management of patients after pituitary surgery. Ther Adv Endocrinol 8:33–48. https://doi.org/10.1177/2042018816687240

    Article  Google Scholar 

  106. Qureshi AI, Suri MFK, Sung GY, Straw RN, Yahia AM, Saad M, Guterman LR, Hopkins LN (2002) Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Clin Neurosurg 50:749–755 discussion 755–6

    Article  Google Scholar 

  107. Rahman M, Friedman WA (2009) Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery 65:925–935. discussion 935–6. https://doi.org/10.1227/01.NEU.0000358954.62182.B3

    Article  PubMed  Google Scholar 

  108. Rajagopal R, Swaminathan G, Nair S, Joseph M (2017) Hyponatremia in traumatic brain injury: a practical management protocol. World Neurosurg 108:529–533. https://doi.org/10.1016/j.wneu.2017.09.013

    Article  PubMed  Google Scholar 

  109. Robertson GL, Shelton RL, Athar S (1976) The osmoregulation of vasopressin. Kidney Int 10:25–37. https://doi.org/10.1038/ki.1976.76

    Article  CAS  PubMed  Google Scholar 

  110. Robertson GL, Aycinena P, Zerbe RL (1982) Neurogenic disorders of osmoregulation. Am J Med 72:339–353. https://doi.org/10.1016/0002-9343(82)90825-7

    Article  CAS  PubMed  Google Scholar 

  111. Rozen-Zvi B, Yahav D, Gheorghiade M, Korzets A, Leibovici L, Gafter U (2010) Vasopressin receptor antagonists for the treatment of hyponatremia: systematic review and meta-analysis. Am J Kidney Dis 56:325–337. https://doi.org/10.1053/j.ajkd.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  112. Ruf AE, Kremers WK, Chavez LL, Descalzi VI, Podesta LG, Villamil FG (2005) Addition of serum sodium into the MELD score predicts waiting list mortality better than MELD alone. Liver Transpl 11:336–343. https://doi.org/10.1002/lt.20329

    Article  PubMed  Google Scholar 

  113. Sane T, Rantakari K, Poranen A, Tahtela R, Valimaki M, Pelkonen R (1994) Hyponatremia after transsphenoidal surgery for pituitary tumors. J Clin Endocrinol Metab 79:1395–1398. https://doi.org/10.1210/jcem.79.5.7962334

    Article  CAS  PubMed  Google Scholar 

  114. Sata A, Hizuka N, Kawamata T, Hori T, Takano K (2006) Hyponatremia after transsphenoidal surgery for hypothalamo-pituitary tumors. Neuroendocrinology 83:117–122. https://doi.org/10.1159/000094725

    Article  CAS  PubMed  Google Scholar 

  115. Sayama T, Inamura T, Matsushima T, Inoha S, Inoue T, Fukui M (2000) High incidence of hyponatremia in patients with ruptured anterior communicating artery aneurysms. Neurol Res 22:151–155

    Article  CAS  Google Scholar 

  116. Schreckinger M, Walker B, Knepper J, Hornyak M, Hong D, Kim J-M, Folbe A, Guthikonda M, Mittal S, Szerlip NJ (2013) Post-operative diabetes insipidus after endoscopic transsphenoidal surgery. Pituitary 16:445–451. https://doi.org/10.1007/s11102-012-0453-1

    Article  PubMed  Google Scholar 

  117. Schrier RW, Berl T, Anderson RJ (1979) Osmotic and nonosmotic control of vasopressin release. Am J Phys 236:F321–F332. https://doi.org/10.1152/ajprenal.1979.236.4.F321

    Article  CAS  Google Scholar 

  118. Se I, Fukagawa A, Higashiyama M, Nakamura T, Kusaka I, Nagasaka S, Honda K, Saito T (2001) Close association of urinary excretion of aquaporin-2 with appropriate and inappropriate arginine vasopressin-dependent antidiuresis in hyponatremia in elderly subjects. J Clin Endocrinol Metab 86:1665–1671. https://doi.org/10.1210/jcem.86.4.7426

    Article  Google Scholar 

  119. See AP, Wu KC, Lai PMR, Gross BA, Du R (2016) Risk factors for hyponatremia in aneurysmal subarachnoid hemorrhage. J Clin Neurosci 32:115–118. https://doi.org/10.1016/j.jocn.2016.04.006

    Article  PubMed  Google Scholar 

  120. Shah K, Turgeon RD, Gooderham PA, Ensom MHH (2018) Prevention and treatment of hyponatremia in patients with subarachnoid hemorrhage: a systematic review. World Neurosurg 109:222–229. https://doi.org/10.1016/j.wneu.2017.09.182

    Article  PubMed  Google Scholar 

  121. Sheehan JM, Sheehan JP, Douds GL, Page RB (2006) DDAVP use in patients undergoing transsphenoidal surgery for pituitary adenomas. Acta Neurochir 148:287–291. discussion 291. https://doi.org/10.1007/s00701-005-0686-0

    Article  CAS  PubMed  Google Scholar 

  122. Sherlock M, O'Sullivan E, Agha A, Behan LA, Rawluk D, Brennan P, Tormey W, Thompson CJ (2006) The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin Endocrinol 64:250–254. https://doi.org/10.1111/j.1365-2265.2006.02432.x

    Article  Google Scholar 

  123. Sivakumar V, Rajshekhar V, Chandy MJ (1994) Management of neurosurgical patients with hyponatremia and natriuresis. Neurosurgery 34:269–274– discussion 274. https://doi.org/10.1227/00006123-199402000-00010

    Article  CAS  PubMed  Google Scholar 

  124. Smith D, McKenna K, Moore K, Tormey W, Finucane J, Phillips J, Baylis P, Thompson CJ (2002) Baroregulation of vasopressin release in adipsic diabetes insipidus. J Clin Endocrinol Metab 87:4564–4568. https://doi.org/10.1210/jc.2002-020090

    Article  CAS  PubMed  Google Scholar 

  125. Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, Decaux G, Fenske W, Hoorn EJ, Ichai C, Joannidis M, Soupart A, Zietse R, Haller M, van der Veer S, Van Biesen W, Nagler E (2014) Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 170:G1–G47. https://doi.org/10.1530/EJE-13-1020

    Article  CAS  PubMed  Google Scholar 

  126. Staiger RD, Sarnthein J, Wiesli P, Schmid C, Bernays RL (2013) Prognostic factors for impaired plasma sodium homeostasis after transsphenoidal surgery. Br J Neurosurg 27:63–68. https://doi.org/10.3109/02688697.2012.714013

    Article  PubMed  Google Scholar 

  127. Sterns RH (2019) Evidence for managing hypernatremia: is it just hyponatremia in reverse? Clin J Am Soc Nephrol 14:645–647. https://doi.org/10.2215/CJN.02950319

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sterns RH, Nigwekar SU, Hix JK (2009) The treatment of hyponatremia. Semin Nephrol 29:282–299. https://doi.org/10.1016/j.semnephrol.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  129. Story DA, Morimatsu H, Egi M, Bellomo R (2007) The effect of albumin concentration on plasma sodium and chloride measurements in critically ill patients. Anesth Analg 104:893–897. https://doi.org/10.1213/01.ane.0000258015.87381.61

    Article  CAS  PubMed  Google Scholar 

  130. Sviri GE, Shik V, Raz B, Soustiel JF (2003) Role of brain natriuretic peptide in cerebral vasospasm. Acta Neurochirur 145:851–860. discussion 860. https://doi.org/10.1007/s00701-003-0101-7

    Article  Google Scholar 

  131. Takaku A, Shindo K, Tanaka S, Mori T, Suzuki J (1979) Fluid and electrolyte disturbances in patients with intracranial aneurysms. Surg Neurol 11:349–356

    CAS  PubMed  Google Scholar 

  132. Thompson CJ, Selby P, Baylis PH (1991) Reproducibility of osmotic and nonosmotic tests of vasopressin secretion in men. Am J Physiol Regul Integr Comp Physiol 260:R533–R539. https://doi.org/10.1152/ajpregu.1991.260.3.R533

    Article  CAS  Google Scholar 

  133. Thrasher TN, Keil LC, Ramsay DJ (1982) Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 110:1837–1839. https://doi.org/10.1210/endo-110-5-1837

    Article  CAS  PubMed  Google Scholar 

  134. Tomida M, Muraki M, Uemura K, Yamasaki K (1998) Plasma concentrations of brain natriuretic peptide in patients with subarachnoid hemorrhage. Stroke 29:1584–1587. https://doi.org/10.1161/01.str.29.8.1584

    Article  CAS  PubMed  Google Scholar 

  135. Van Amelsvoort T, Bakshi R, Devaux CB, Schwabe S (1994) Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia 35:181–188. https://doi.org/10.1111/j.1528-1157.1994.tb02930.x

    Article  PubMed  Google Scholar 

  136. Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, Thompson CJ (2013) Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. In: Am. J. Med. pp. S1–42

  137. Wang N, Nguyen PK, Pham CU, Smith EA, Kim B, Goetz MB, Graber CJ (2019) Sodium content of intravenous antibiotic preparations. Open Forum Infect Dis 6

  138. Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, Parra A, Connolly ES, Mayer SA (2006) Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med 34:617–623– quiz 624. https://doi.org/10.1097/01.ccm.0000201903.46435.35

    Article  PubMed  Google Scholar 

  139. Wijdicks EF, Vermeulen M, Haaf ten JA, Hijdra A, Bakker WH, van Gijn J (1985) Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol 18:211–216. doi: https://doi.org/10.1002/ana.410180208

  140. Wijdicks EF, Vermeulen M, Hijdra A, van Gijn J (1985) Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol 17:137–140. https://doi.org/10.1002/ana.410170206

    Article  CAS  PubMed  Google Scholar 

  141. Yuen KCJ, Ajmal A, Correa R, Little AS (2019) Sodium perturbations after pituitary surgery. Neurosurg Clin N Am 30:515–524. https://doi.org/10.1016/j.nec.2019.05.011

    Article  PubMed  Google Scholar 

  142. Zerbe RL, Miller JZ, Robertson GL (1991) The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J Lab Clin Med 117:51–59

    CAS  PubMed  Google Scholar 

Download references

Declarations

No part of this article has been previously published or presented and no funding was acquired for the study.

All authors approved the final submission and all authors agree to be accountable for all aspects of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mendel Castle-Kirszbaum.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethics approval

Not applicable.

Consent to participate

Not Applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castle-Kirszbaum, M., Kyi, M., Wright, C. et al. Hyponatraemia and hypernatraemia: Disorders of Water Balance in Neurosurgery. Neurosurg Rev 44, 2433–2458 (2021). https://doi.org/10.1007/s10143-020-01450-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-020-01450-9

Keywords

Navigation