Skip to main content

Advertisement

Log in

Ever-advancing chronic myeloid leukemia treatment

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Treatment of chronic myeloid leukemia (CML) has been drastically changed by the emergence of the ABL tyrosine kinase inhibitor (TKI), imatinib mesylate. However, resistance and intolerance have frequently been reported, particularly in patients with advanced-stage disease. Point mutations within the ABL kinase domain that interfere with imatinib binding are the most critical cause of imatinib resistance. To overcome this resistance, four second-generation ATP competitive ABL TKIs, dasatinib, nilotinib, bosutinib and bafetinib, have been developed. Dasatinib and nilotinib also demonstrated higher efficacy than imatinib in previously untreated CML patients in chronic phase. Despite promising clinical results, the frequently observed mutant T315I is not effectively targeted by any of the second-generation ABL TKIs. Thus, a third-generation ABL TKI, ponatinib, was developed to inhibit all mutated BCR-ABL and showed clinical efficacy in CML cells harbouring T315I. CML treatment is rapidly progressing and further evolution is surely expected. Moreover, it was recently reported that some CML patients who achieved sustained complete molecular response could stop TKI. CML may become the first human cancer to be conquered solely with oral medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  2. O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1104

    Article  PubMed  Google Scholar 

  3. Baccarani M, Deininger MW, Rosti G et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122:872–884

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien S, Abboud CN, Akhtari M et al (2012) NCCN Clinical Practice Guidelines in Oncology: Chronic Myelogenous Leukemia. Version 2, 2013. Available at: NCCN.org. Accessed Sep 17, 2012

  5. Deininger M, O’Brien SG, Guilhot F et al (2009) International randomized study of Interferon vs STI571 (IRIS) 8-year follow up: Sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib. Blood 114:462 (Abstract 1126)

    Google Scholar 

  6. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  7. Hegedus T, Orfi L, Seprodi A et al (2002) Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 1587:318–325

    Article  CAS  PubMed  Google Scholar 

  8. Wu J, Meng F, Lu H et al (2008) Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib resistant chronic myelogenous leukemia cells. Blood 111:3821–3829

    Article  CAS  PubMed  Google Scholar 

  9. White DL, Dang P, Engler J et al (2010) Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol 28:2761–2767

    Article  CAS  PubMed  Google Scholar 

  10. Kuroda J, Puthalakath H, Cragg MS et al (2006) Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 103:14907–14912

    Article  CAS  PubMed  Google Scholar 

  11. Ng KP, Hillmer AM, Chuah CT et al (2012) A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 18:521–528

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka R, Kimura S, Ashihara E et al (2011) Rapid automated detection of ABL kinase domain mutations in imatinib-resistant patients. Cancer Lett 312:228–234

    Article  CAS  PubMed  Google Scholar 

  13. Khorashad JS, Kelley TW, Szankasi P et al (2013) BCR-ABL1 compound mutations in tyrosine kinase inhibitor-resistant CML: frequency and clonal relationships. Blood 121:489–498

    Article  CAS  PubMed  Google Scholar 

  14. Sherbenou DW, Hantschel O, Kaupe I et al (2010) BCR-ABL SH3-SH2 domain mutations in chronic myeloid leukemia patients on imatinib. Blood 116:3278–3285

    Article  CAS  PubMed  Google Scholar 

  15. Shah NP, Tran C, Lee FY et al (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401

    Article  CAS  PubMed  Google Scholar 

  16. Deguchi Y, Kimura S, Ashihara E et al (2008) Comparison of imatinib, dasatinib, nilotinib and INNO-406 in imatinib-resistant cell lines. Leuk Res 32:980–983

    Article  CAS  PubMed  Google Scholar 

  17. Hochhaus A, Baccarani M, Deininger M et al (2008) Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia 22:1200–1206

    Article  CAS  PubMed  Google Scholar 

  18. Shah NP, Kantarjian HM, Kim DW et al (2008) Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol 26:3204–3212

    Article  CAS  PubMed  Google Scholar 

  19. Kantarjian H, Shah NP, Hochhaus A et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362:2260–2270

    Article  CAS  PubMed  Google Scholar 

  20. Kim DH, Kamel-Reid S, Chang H et al (2009) Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica 94:135–139

    Article  CAS  PubMed  Google Scholar 

  21. Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141

    Article  CAS  PubMed  Google Scholar 

  22. Kantarjian HM, Giles F, Gattermann N et al (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110:3540–3546

    Article  CAS  PubMed  Google Scholar 

  23. Saglio G, Kim DW, Issaragrisil S et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362:2251–2259

    Article  CAS  PubMed  Google Scholar 

  24. Golas JM, Arndt K, Etienne D et al (2003) SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 3:375–381

    Google Scholar 

  25. Kimura S, Naito H, Segawa H et al (2005) NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood 106:3948–3954

    Article  CAS  PubMed  Google Scholar 

  26. Kantarjian H, le Coutre P, Cortes J et al (2010) Phase I study of INNO-406, a dual Abl/Lyn kinase inhibitor, in Philadelphia chromosome-positive leukemias post-imatinib resistance or intolerance. Cancer 16:2665–2672

    Google Scholar 

  27. Imam SZ, Trickler W, Kimura S et al (2013) Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLoS One 8:e65129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. O’Hare T, Shakespeare WC, Zhu X et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:401–412

    Article  PubMed Central  PubMed  Google Scholar 

  29. Kimura S (2010) Second generation Abl kinase inhibitors and novel compounds to eliminate the Bcr-Abl/T315I clone (Second Edition). Recent Pat Anticancer Drug Discov 2010:116–131

    Google Scholar 

  30. Saussele S, Lauseker M, Gratwohl A et al (2010) Allogeneic hematopoietic stem cell transplantation (allo SCT) for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML Study IV. Blood 115:1880–1885

    Article  CAS  PubMed  Google Scholar 

  31. Mahon FX, Réa D, Guilhot J et al (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11:1029–1035

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

S.K. received research grants and lecture fees from Bristol-Myers Squibb and Novartis Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Kimura.

About this article

Cite this article

Kimura, S., Ando, T. & Kojima, K. Ever-advancing chronic myeloid leukemia treatment . Int J Clin Oncol 19, 3–9 (2014). https://doi.org/10.1007/s10147-013-0641-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-013-0641-7

Keywords

Navigation