Skip to main content
Log in

Nephroprotective effect of catechin on gentamicin-induced experimental nephrotoxicity

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Gentamicin is an effective aminoglycoside antibiotic employed against severe Gram-negative bacterial infections, but induction of nephrotoxicity limits its frequent clinical use. This study was undertaken to investigate the effect of catechin hydrate on gentamicin-induced nephrotoxicity in rats.

Methods

Rats were administered nephrotoxic dose of gentamicin (100 mg/kg/day, i.p.) once daily for 14 days. Gentamicin-administered rats were treated with catechin hydrate (50 mg/kg/day, per os), the treatment was started 3 days before the administration of gentamicin while it was continued for 14 days from the day of gentamicin administration.

Results

Two weeks administration of gentamicin significantly increased the serum creatinine and blood urea nitrogen levels. Renal histopathological examination of gentamicin-administered rats revealed degenerative changes in glomeruli and tubules after 2 weeks. These renal structural and functional abnormalities in gentamicin-administered rats were accompanied with renal oxidative stress as assessed in terms of marked decrease in renal-reduced glutathione (GSH). However, catechin hydrate treatment showed considerably nephroprotective action against gentamicin-induced nephrotoxicity in rats by preventing aforementioned renal structural and functional abnormalities and oxidative stress.

Conclusion

Catechin hydrate has a potential to prevent gentamicin-induced experimental nephrotoxicity. The renoprotective effect of catechin hydrate against gentamicin-induced nephrotoxicity might be mediated through its antioxidant and possible direct nephroprotective actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pokrovskaya V, Nudelman I, Kandasamy J, Baasov T. Aminoglycosides redesign strategies for improved antibiotics and compounds for treatment of human genetic diseases. Methods Enzymol. 2010;478:437–62.

    Article  CAS  PubMed  Google Scholar 

  2. Begg EJ, Barclay ML. Aminoglycosides—50 years on. Br J ClinPharmacol. 1995;39:597–603.

    CAS  Google Scholar 

  3. Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy. Mayo Clin Proc. 2011;86:156–67.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Khoory BJ, Fanos V, Dall’Agnola A, Cataldi L. Aminoglycosides, risk factors and neonatal kidney. Pediatr Med Chir. 1996;18:495–9.

    CAS  PubMed  Google Scholar 

  5. Martínez-Salgado C, López-Hernández FJ, LópezNovoa JM. Glomerular nephrotoxicity aminoglycosides. Toxicol Appl Pharmacol. 2007;223(1):86–98.

    Article  PubMed  Google Scholar 

  6. Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin-induced nephrotoxicity: do we have a promising therapeutic approach to blunt it? Pharmacol Res. 2010;62:179–86.

    Article  CAS  PubMed  Google Scholar 

  7. Ali BH. Gentamicin nephrotoxicity in humans and animals: some recent research. Gen Pharmacol. 1995;26:1477–87.

    Article  CAS  PubMed  Google Scholar 

  8. Mingeot-Leclercq M-P, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43:1003–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Yang CL, Du XH, Han YX. Renal cortical mitochondria are the source of oxygen free radicals enhanced by gentamicin. Ren Fail. 1995;17:21–6.

    Article  CAS  PubMed  Google Scholar 

  10. Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi A, Masini E, Salvemini D. A role for superoxide in gentamicin-mediated nephropathy in rats. Eur J Pharmacol. 2002;450:67–76.

    Article  CAS  PubMed  Google Scholar 

  11. Bledsoe G, Shen B, Yao YY, Hagiwara M, Mizell B, Teuton M, Grass D, Chao L, Chao J. Role of tissue kallikrein in prevention and recovery of gentamicin-induced renal injury. Toxicol Sci. 2008;102:433–43.

    Article  CAS  PubMed  Google Scholar 

  12. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21:334–50.

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi H, Tanaka Y, Asagiri K, Asakawa T, Tanikawa K, Kage M, Yagi M. The antioxidant effect of green tea catechin ameliorates experimental liver injury. Phytomedicine. 2010;17:197–202.

    Article  CAS  PubMed  Google Scholar 

  14. Abd El-Aziz TA, Mohamed RH, Pasha HF, Abdel-Aziz HR. Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med. 2012;12(4):223–40.

    Article  Google Scholar 

  15. Farooqui AA. Beneficial effects of green tea catechins on neurological disorders. In: Phytochemicals, signal transduction, and neurological disorders. Springer: New York; 2012. p. 117–49.

  16. Ihm SH, Lee JO, Kim SJ, Seung KB, Schini-Kerth VB, Chang K, Oak MH. Catechin prevents endothelial dysfunction in the prediabetic stage of OLETF rats by reducing vascular NADPH oxidase activity and expression. Atherosclerosis. 2009;206:47–53.

    Article  CAS  PubMed  Google Scholar 

  17. Chander V, Singh D, Chopra K. Catechin, a natural antioxidant protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Pharmacol Res. 2003;48:503–9.

    Article  CAS  PubMed  Google Scholar 

  18. Cao Y, He XJ, Xiang W, Yi ZW. Protective effect of catechin on renal microvessels in 5/6 nephrectomized rats and its mechanism. Zhong Xi Yi Jie He XueBao. 2009;7:557–62.

    Article  CAS  Google Scholar 

  19. Hase M, Babazono T, Karibe S, Kinae N, Iwamoto Y. Renoprotective effects of tea catechin in streptozotocin- induced diabetic rats. Int Urol Nephrol. 2006;38:693–9.

    Article  CAS  PubMed  Google Scholar 

  20. Chennasamudram SP, Kudugunti S, Boreddy PR, Moridani MY, Vasylyeva TL. Renoprotective effects of (+)-catechin in streptozotocin-induced diabetic rat model. Nutr Res. 2012;32:347–56.

    Article  CAS  PubMed  Google Scholar 

  21. Cekmen M, Otunctemur A, Ozbek E, Cakir SS, Dursun M, Polat EC, Somay A, Ozbay N. Pomegranate extract attenuates gentamicin-induced nephrotoxicity in rats by reducing oxidative stress. Ren Fail. 2013;35:268–74.

    Article  PubMed  Google Scholar 

  22. Otunctemur A, Ozbek E, Cekmen M, Cakir SS, Dursun M, Polat EC, Somay A, Ozbay N. Protective effect of montelukastwhich is cysteinyl-leukotriene receptor antagonist on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Ren Fail. 2013;35:403–10.

    Article  CAS  PubMed  Google Scholar 

  23. Kadian S, Mahadevan N, Balakumar P. Differential effects of low-dose fenofibrate treatment in diabetic rats with early onset nephropathy and established nephropathy. Eur J Pharmacol. 2013;698:388–96.

    Article  CAS  PubMed  Google Scholar 

  24. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Bio phys. 1959;82:70–7.

    Article  CAS  Google Scholar 

  25. Boyne AF, Ellman GL. A methodology for analysis of tissue sulfhydryl components. Anal Biochem. 1972;46:639–53.

    Article  CAS  PubMed  Google Scholar 

  26. Patel Manali B, Deshpande S, Shah G. Evaluation of efficacy of vitamin E and N-acetyl cysteine in gentamicin-induced nephrotoxicity in rats. Ren Fail. 2011;33(3):341–7.

    Article  PubMed  Google Scholar 

  27. Pai PG, ChamariNawarathna S, Kulkarni A, Habeeba U, Reddy CS, Teerthanath S, Shenoy JP. Nephroprotective effect of ursolic acid in a murine model of gentamicin-induced renal damage. ISRN Pharmacol. 2012;2012:410902. doi:10.5402/2012/410902.

  28. Arora MK, Reddy K, Balakumar P. The low dose combination of fenofibrate and rosiglitazone halts the progression of diabetes-induced experimental nephropathy. Eur J Pharmacol. 2010;636:137–44.

    Article  CAS  PubMed  Google Scholar 

  29. Whiting PH, Brown PA. The relationship between enzymuria and kidney enzyme activities in experimental gentamicin nephrotoxicity. Ren Fail. 1996;18:899–909.

    Article  CAS  PubMed  Google Scholar 

  30. Elfarra AA, Duescher RJ, Sausen PJ, O’hara TM, Cooley AJ. Methimazole protection of rats against gentamicin-induced nephrotoxicity. Can J Physiol Pharmacol. 1994;72:1238–44.

    Article  CAS  PubMed  Google Scholar 

  31. Geleilete TJ, Melo GC, Costa RS, Volpini RA, Soares TJ, Coimbra TM. Role of myofibroblasts, macrophages, transforming growth factor-beta endothelin, angiotensin-II, and fibronectin in the progression of tubulointerstitial nephritis induced by gentamicin. J Nephrol. 2002;15:633–42.

    CAS  PubMed  Google Scholar 

  32. Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA. Protective effect of quercetin against gentamicin-induced nephrotoxicity in rats. Biol Pharm Bull. 2009;32:61–7.

    Article  CAS  PubMed  Google Scholar 

  33. Pedraza-Chaverri J, Maldonado PD, Medina-Campos ON, Olivares-Corichi IM, Granados-Silvestre MA, Hernandez-Pando R, et al. Garlic ameliorates gentamicin nephrotoxicity: relation to antioxidant enzymes. Free RadicBiol Med. 2000;29:602–11.

    Article  CAS  Google Scholar 

  34. Maldonado PD, Barrera D, Medina-Campos ON, Hernandez-Pando R, Ibarra-Rubio ME, Pedraza-Chaverri J. Aged garlic extract attenuates gentamicin induced renal damage and oxidative stress in rats. Life Sci. 2003;73:2543–56.

    Article  CAS  PubMed  Google Scholar 

  35. Harada M, Kan Y, Naoki H, Fukui Y, Kageyama N, Nakai M, Miki W, Kiso Y. Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (-)-epicatechin. Biosci Biotechnol Biochem. 1999;63(6):973–7.

    Article  CAS  PubMed  Google Scholar 

  36. Bharrhan S, Koul A, Chopra K, Rishi P. Catechin suppresses an array of signalling molecules and modulates alcohol-induced endotoxin mediated liver injury in a rat model. PLoS One. 2011;6:e20635.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Raj Vasanth, et al. Protective Role of catechin on d-galactosamineinduced hepatotoxicity through a p53 dependent pathway. Indian J ClinBiochem. 2010;25:349–56.

    CAS  Google Scholar 

  38. Bhardwaj P, Khanna D, Balakumar P. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities. Cardio Vasc Toxicol. 2014;14:41–51.

    Article  CAS  Google Scholar 

  39. Hamaishi K, Kojima R, Ito M. Anti-ulcer effect of tea catechin in rats. Biol Pharm Bull. 2006;29:2206–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our gratefulness to Dr. Rajendar Singh Sra, MD, Chairman, and Shri Om Parkash, Secretary, Rajendra Institute of Technology and Sciences (RITS), Sirsa, Haryana, India, for their support.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Khanna.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardana, A., Kalra, S., Khanna, D. et al. Nephroprotective effect of catechin on gentamicin-induced experimental nephrotoxicity. Clin Exp Nephrol 19, 178–184 (2015). https://doi.org/10.1007/s10157-014-0980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-0980-3

Keywords

Navigation