Skip to main content
Log in

Pretreatment of the cockroach cercal afferent/giant interneuron synapses with nicotinoids and neonicotinoids differently affects acetylcholine and nicotine-induced ganglionic depolarizations

  • Original Article
  • Published:
Invertebrate Neuroscience

Abstract

We have recently demonstrated that neonicotinoid insecticides were able to act as agonists of postsynaptic nicotinic acetylcholine receptors (nAChRs) expressed at the synapse between the cercal nerve XI and the giant interneurons, in the sixth abdominal ganglion. In this work, we demonstrated that nicotinoids such as nornicotine acted as an agonist of nicotinic acetylcholine receptors expressed at cercal afferent/giant interneurons while cotinine was a poor agonist. Indeed, nornicotine induced a ganglionic depolarization which was blocked by the nicotinic antagonist mecamylamine. In addition, we found that pretreatment of the sixth abdominal ganglion with 1 and 10 μM nornicotine and cotinine had no significant effect on acetylcholine and nicotine-induced depolarization. But pretreatment with 1 and 10 μM acetamiprid and imidacloprid had a strong effect. 1 and 10 μM acetamiprid completely blocked acetylcholine-induced depolarization, whereas imidacloprid had a partial effect. The present work therefore suggests, in agreement with previous studies, that nornicotine and cotinine bind to distinct cockroach postsynaptic nAChRs, whereas acetamiprid and imidacloprid have competitive effects with acetylcholine and nicotine on ganglionic depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Briggs CA, McKenna DG (1998) Activation and inhibition of the human alpha7 nicotinic acetylcholine receptor by agonists. Neuropharmacology 37(9):1095–1102. doi:10.1016/S0028-3908(98)00110-5

    Article  PubMed  CAS  Google Scholar 

  • Buckingham S, Lapied B, Corronc H, Sattelle DB (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200(Pt 21):2685–2692. doi:10.1016/S0028-3908(98)00110-5

    PubMed  CAS  Google Scholar 

  • Bunckingham SD, Lapied B, Le Corronc H, Grolleau F, Sattelle DB (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2691

    Google Scholar 

  • Calas-List D, List O, Thany SH (2012) Nornicotine application on cockroach dorsal unpaired median neurons induces two distinct ionic currents: implications of different nicotinic acetylcholine receptors. Neurosci Lett 518(1):64–68. doi:10.1016/j.neulet.2012.04.058

    Article  PubMed  CAS  Google Scholar 

  • Callec JJ, Sattelle DB (1973) A simple technique for monitoring the synaptic actions of pharmacological agents. J Exp Biol 59(3):725–738

    PubMed  CAS  Google Scholar 

  • Callec JJ, Sattelle DB, Hue B, Pelhate M (1980) Central synaptic actions of pharmacological agents in insects: oil-gap and mannitol-gap studies. In: Sherwood M (ed) Neurotox 79. Plenum Press, New York, pp 93–100

    Google Scholar 

  • Callec JJ, David JA, Sattelle DB (1982) Ionophoretic application of acetylcholine on to the dendrites of an identified giant interneuron (GI 1) in the cockroach Periplaneta americana. J Insect Physiol 28:1003–1008

    Article  CAS  Google Scholar 

  • Copeland JR, Adem A, Jacob P 3rd, Nordberg A (1991) A comparison of the binding of nicotine and nornicotine stereoisomers to nicotinic binding sites in rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol 343(2):123–127

    Article  PubMed  CAS  Google Scholar 

  • Courjaret R, Lapied B (2001) Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol Pharmacol 60(1):80–91

    PubMed  CAS  Google Scholar 

  • Crooks PA, Dwoskin LP (1997) Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochem Pharmacol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Crooks PA, Li M, Dwoskin LP (1995) Determination of nicotine metabolites in rat brain after peripheral radiolabeled nicotine administration: detection of nornicotine. Drug Metab Dispos 23(10):1175–1177

    PubMed  CAS  Google Scholar 

  • Crooks PA, Li M, Dwoskin LP (1997) Metabolites of nicotine in rat brain after peripheral nicotine administration. Cotinine, nornicotine, and norcotinine. Drug Metab Dispos 25(1):47–54

    PubMed  CAS  Google Scholar 

  • Ghosheh O, Dwoskin LP, Li WK, Crooks PA (1999) Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2′-(14)C]nicotine. Drug Metab Dispos 27(12):1448–1455

    PubMed  CAS  Google Scholar 

  • Ghosheh OA, Dwoskin LP, Miller DK, Crooks PA (2001) Accumulation of nicotine and its metabolites in rat brain after intermittent or continuous peripheral administration of [2′-(14)C]nicotine. Drug Metab Dispos 29(5):645–651

    PubMed  CAS  Google Scholar 

  • Green TA, Crooks PA, Bardo MT, Dwoskin LP (2001) Contributory role for nornicotine in nicotine neuropharmacology: nornicotine-evoked [3H]dopamine overflow from rat nucleus accumbens slices. Biochem Pharmacol 62(12):1597–1603. doi:10.1016/S0006-2952(01)00838-3

    Article  PubMed  CAS  Google Scholar 

  • Harrow ID, Hue B, Pelhate M, Sattelle DB (1979) Alpha-bungarotoxin blocks excitatory post-synaptic potentials in an identified insect interneurones. J Physiol (Lond) 295:63–64

    Google Scholar 

  • Harrow ID, Hue B, Gepner JI, Hall LM, Sattelle DB (1980) An alpha-bungarotoxin sensitive acetylcholine receptor in the central nervous system of the cockroach, Periplaneta americana. In: Sherwood M (ed) Neurotox 79. Plenum Press, New York, pp 137–144

    Google Scholar 

  • Keskitalo K, Broms U, Heliovaara M, Ripatti S, Surakka I, Perola M et al (2009) Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet 18(20):4007–4012. doi:10.1093/hmg/ddp322

    Article  PubMed  CAS  Google Scholar 

  • Le Questel JY, Graton J, Ceron-Carrasco JP, Jacquemin D, Planchat A, Thany SH (2011) New insights on the molecular features and electrophysiological properties of dinotefuran, imidacloprid and acetamiprid neonicotinoid insecticides. Bioorg Med Chem 19(24):7623–7634. doi:10.1016/j.bmc.2011.10.019

    Article  PubMed  Google Scholar 

  • Moyer TP, Charlson JR, Enger RJ, Dale LC, Ebbert JO, Schroeder DR et al (2002) Simultaneous analysis of nicotine, nicotine metabolites, and tobacco alkaloids in serum or urine by tandem mass spectrometry, with clinically relevant metabolic profiles. Clin Chem 48(9):1460–1471

    PubMed  CAS  Google Scholar 

  • O’Leary K, Parameswaran N, McIntosh JM, Quik M (2008) Cotinine selectively activates a subpopulation of alpha3/alpha6beta2 nicotinic receptors in monkey striatum. J Pharmacol Exp Ther 325(2):646–654. doi:10.1124/jpet.108.136838

    Article  PubMed  Google Scholar 

  • Riah O, Dousset J-C, Courriere P, Stigliani J-L, Baziard-Mouysset G, Belahsen Y (1999) Evidence that nicotine acetylcholine receptors are not the main targets of cotinine toxicity. Toxicol Lett 109:21–29

    Article  PubMed  CAS  Google Scholar 

  • Sattelle DB, David JA, Harrow ID, Hue B (1980) Action of alpha-bungarotoxin on identified insect central neurones. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, North Holland, pp 125–139

    Google Scholar 

  • Schroff KC, Lovich P, Schmitz O, Aschhoff S, Richter E, Remien J (2000) Effects of cotinine at cholinergic nicotinic receptors of the sympathetic superior cervical ganglion of the mouse. Toxicol 144:99–105

    Article  CAS  Google Scholar 

  • Thany SH (2009) Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion. NeuroToxicol 30(6):1045–1052

    Article  CAS  Google Scholar 

  • Thany SH (2011) Thiamethoxam, a poor agonist of nicotinic acetylcholine receptors expressed on isolated cell bodies, acts as a full agonist at cockroach cercal afferent/giant interneuron synapses. Neuropharmacology 60(4):587–592. doi:10.1016/j.neuropharm.2010.12.008

    Article  PubMed  CAS  Google Scholar 

  • Thany SH, Tricoire-Leignel H (2011) Emerging pharmacological properties of cholinergic synaptic transmission: comparison between mammalian and insect synaptic and extrasynaptic nicotinic receptors. Curr Neuropharmacol 9(4):706–714. doi:10.2174/157015911798376343

    Article  PubMed  CAS  Google Scholar 

  • Thany SH, Lenaers G, Raymond-Delpech V, Sattelle DB, Lapied B (2007) Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 28(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • Vainio PJ, Tuominen RK (2001) Cotinine binding to nicotinic acetylcholine receptors in bovine chromaffin cell and rat brain membranes. Nicotine Tob Res 3(2):177–182. doi:10.1080/14622200110043095

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Nordberg A (1993) The competition of (−)-[3H]nicotine binding by the enantiomers of nicotine, nornicotine and anatoxin-a in membranes and solubilized preparations of different brain regions of rat. Naunyn Schmiedebergs Arch Pharmacol 348(1):28–34

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steeve H. Thany.

Additional information

Benzidane Yassine and Xavier Leray contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yassine, B., Leray, X., Falaise, C. et al. Pretreatment of the cockroach cercal afferent/giant interneuron synapses with nicotinoids and neonicotinoids differently affects acetylcholine and nicotine-induced ganglionic depolarizations. Invert Neurosci 13, 91–97 (2013). https://doi.org/10.1007/s10158-013-0151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-013-0151-3

Keywords

Navigation