Skip to main content

Advertisement

Log in

Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Various paper, oil, leather and textile industries generates a large amount of aromatic recalcitrant organic pollutants and release them into the environment which causes severe health hazards to all living organisms. Residual dyes generated from textile industries are released into the water bodies causes environmental disbalance by getting accumulated in aquatic animals and plants causing death. Many times, this polluted water is used for agriculture purposes and reaches humans through biomagnification and bioaccumulation processes. Synthetic dyes are widely used in the textile industries, when comes in contact with humans via food chain or physical contact causes cancer and genetic mutation. The harmful colour effluent from the textile industries could be managed by various physicochemical and biological methods such as oxidation, phytoremediation, coagulation, or precipitation, using microbial consortium, membrane filtration, chemical, microalgal consortium, enzymatic bioremediation, and adsorbents such as biochar or microbes before releasing into nature. This review focuses on biochar as a viable resource for pollutant removal, climate mitigation, soil and water enhancement and bioethanol production improvement. Its efficiency levels and economic value can also be manipulated by the arrangement of these conditions. We have also discussed different types of dyes used in various industrial and their toxicity. Further, the management of industrial waste effluents containing dyes using agroindustrial waste-derived biochar is discussed in detail. Moreover, other applications of biochar and recent advancements on dye adsorption using biochar are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao C, Gao W, Song K, Na H, Tian F, Zhang S (2019) Spatial and temporal dynamics of air-pollutant emission inventory of steel industry in China: a bottom-up approach. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2018.12.032

    Article  Google Scholar 

  2. Mandeep, Gupta GK, Liu H, Shukla P (2019) Pulp and paper industry-based pollutants, their health hazards and environmental risks. Curr Opin Environ Sci Health. https://doi.org/10.1016/j.coesh.2019.09.010

    Article  Google Scholar 

  3. Kanagaraj J, Velappan KC, Chandra Babu NK, Sadulla S (2006) Solid wastes generation in the leather industry and its utilization for cleaner environment—a review. J Sci Ind Res. https://doi.org/10.1002/chin.200649273

    Article  Google Scholar 

  4. Lladó J, Gil RR, Lao-Luque C, Solé-Sardans M, Fuente E, Ruiz B (2017) Highly microporous activated carbons derived from biocollagenic wastes of the leather industry as adsorbents of aromatic organic pollutants in water. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.04.018

    Article  Google Scholar 

  5. Casoni AI, Mendioroz P, Volpe MA, Gutierrez VS (2019) Magnetic amendment material based on bio-char from edible oil industry waste. Its performance on aromatic pollutant removal from water. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103559

    Article  Google Scholar 

  6. Lokhande S, Singare U, Pimple S (2012) Study on physico-chemical parameters of waste water effluents from Taloja industrial area of Mumbai, India. Int J Ecosyst. https://doi.org/10.5923/j.ije.20110101.01

    Article  Google Scholar 

  7. Castillejo M, Moreno P, Oujja M, Radvan R (eds) (2008) Lasers in the conservation of artworks. In: Proceedings of the international conference Lacona VII, Madrid, Spain, 17–21 September 2007. CRC Press, London. https://doi.org/10.1201/9780203882085.

  8. Dyes MH (2014) General survey. In: Ullmann's encyclopedia of industrial chemistry. Wiley, pp 1–38. https://doi.org/10.1002/14356007.a09_073.pub2

  9. Gupta M, Savla N, Pandit C, Pandit S, Gupta PK, Pant M et al (2022) Use of biomass-derived biochar in wastewater treatment and power production: a promising solution for a sustainable environment. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.153892

    Article  Google Scholar 

  10. Patwardhan SB, Pandit S, Kumar Gupta P, Kumar Jha N, Rawat J, Joshi HC et al (2022) Recent advances in the application of biochar in microbial electrochemical cells. Fuel 311:122501. https://doi.org/10.1016/j.fuel.2021.122501

    Article  Google Scholar 

  11. Gregory P (1990) Classification of dyes by chemical structure. Chem Appl Dyes. https://doi.org/10.1007/978-1-4684-7715-3_2

    Article  Google Scholar 

  12. Simu GM, Chicu SA, Morin N, Schmidt W, Şişu E (2004) Direct dyes derived from 4,4′-diaminobenzanilide synthesis, characterization and toxicity evaluation of a disazo symmetric direct dye. Turk J Chem

  13. Zahedifar M, Seyedi N, Salajeghe M, Shafiei S (2020) Nanomagnetic biochar dots coated silver NPs (BCDs-Ag/MNPs): a highly efficient catalyst for reduction of organic dyes. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.122789

    Article  Google Scholar 

  14. Benkhaya S, Harf AE (2017) Design of a new layered composite membrane based on a physical copolymer (PSU / PEI / PPc) supported by a tri-component support (PA6 / fiberglass / PA6). Application of ultrafiltration baths based on azoic and antraquinonique dyes

  15. Gokulan R, Avinash A, Prabhu GG, Jegan J (2019) Remediation of remazol dyes by biochar derived from Caulerpa scalpelliformis—an eco-friendly approach. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103297

    Article  Google Scholar 

  16. Doruk Aracagök Y, Cihangir N (2013) Decolorization of reactive black 5 by Yarrowia lipolytica NBRC 1658. Am J Microbiol Res. https://doi.org/10.12691/ajmr-1-2-1.

  17. Sudha M, Saranya A, Selvakumar G, Sivakumar N (2018) Microbial degradation of Azo Dyes : a review. Int J Curr Microbiol Appl Sci

  18. Puvaneswari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol

  19. Saini A, Doda A, Singh B (2018) Recent advances in microbial remediation of textile azo dyes. Phytobiont Ecosyst Restit. https://doi.org/10.1007/978-981-13-1187-1_3

    Article  Google Scholar 

  20. Khan S, Malik A (2018) Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0783-7

    Article  Google Scholar 

  21. Hassaan MA, El NA (2017) Health and environmental impacts of dyes : mini review. Am J Environ Sci Eng. https://doi.org/10.11648/j.ajese.20170103.11.

  22. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  23. Rawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere. https://doi.org/10.1016/j.chemosphere.2016.04.068

    Article  Google Scholar 

  24. Vargas AMM, Paulino AT, Nozaki J (2009) Effects of daily nickel intake on the bio-accumulation, body weight and length in tilapia (Oreochromis niloticus). Toxicol Environ Chem. https://doi.org/10.1080/02772240802541353

    Article  Google Scholar 

  25. Jadhav JP, Patil DN, Vyavahare GD, Patil TS, Aware CB, Muley D V et al (2018) Assessment of cytotoxic and genotoxic effect of the textile dyes on Allium cepa. Artic Int J Pharm Biol Sci. https://doi.org/10.21276/ijpbs.2019.9.1.41

  26. Vyavahare GD, Gurav RG, Jadhav PP, Patil RR, Aware CB, Jadhav JP (2018) Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.11.180

    Article  Google Scholar 

  27. Copaciu F, Opriş O, Coman V, Ristoiu D, Niinemets Ü, Copolovici L (2013) Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water Air Soil Pollut. https://doi.org/10.1007/s11270-013-1478-4

    Article  Google Scholar 

  28. Sendelbach LE (1989) A review of the toxicity and carcinogenicity of anthraquinone derivatives. Toxicology. https://doi.org/10.1016/0300-483X(89)90113-3

    Article  Google Scholar 

  29. Lucas MS, Dias AA, Sampaio A, Amaral C, Peres JA (2007) Degradation of a textile reactive Azo dye by a combined chemical-biological process: Fenton’s reagent-yeast. Water Res. https://doi.org/10.1016/j.watres.2006.12.013

    Article  Google Scholar 

  30. Nguyen TA, Juang RS (2013) Treatment of waters and wastewaters containing sulfur dyes: a review. Chem Eng J. https://doi.org/10.1016/j.cej.2012.12.102

    Article  Google Scholar 

  31. Sharma P, Singh L, Mehta J (2010) COD reduction and colour removal of simulated textile mill wastewater by mixed bacterial consortium. Rasayan J Chem

  32. Bektaş İ, Karaman Ş, Dıraz E, Çelik M (2016) The role of natural indigo dye in alleviation of genotoxicity of sodium dithionite as a reducing agent. Cytotechnology. https://doi.org/10.1007/s10616-016-0018-7

    Article  Google Scholar 

  33. Kumar G, Huy M, Bakonyi P, Bélafi-Bakó K, Kim SH (2018) Evaluation of gradual adaptation of mixed microalgae consortia cultivation using textile wastewater via fed batch operation. Biotechnol Rep. https://doi.org/10.1016/j.btre.2018.e00289

    Article  Google Scholar 

  34. Geçgel Ü, Özcan G, Gürpnar GÇ (2013) Removal of methylene blue from aqueous solution by activated carbon prepared from pea shells (Pisum sativum). J Chem. https://doi.org/10.1155/2013/614083

    Article  Google Scholar 

  35. Selvanathan N, Subki NS, Sulaiman MA, Subki NS (2015) Dye adsorbent by activated carbon. J Trop Resour Sustain Sci 3:169–173

    Google Scholar 

  36. Iqbal MJ, Ashiq MN (2007) Adsorption of dyes from aqueous solutions on activated charcoal. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2006.06.007

    Article  Google Scholar 

  37. Sanghi R, Bhattacharya B (2003) Adsorption-coagulation for the decolorisation of textile dye solutions. Water Qual Res J Can. https://doi.org/10.2166/wqrj.2003.036

    Article  Google Scholar 

  38. Ros Reyes CA, Vargas Fiallo LY (2011) Application of illite- and kaolinite-rich clays in the synthesis of zeolites for wastewater treatment. Earth Environ Sci. https://doi.org/10.5772/25895

    Article  Google Scholar 

  39. Shen Z, Wang W, Jia J, Ye J, Feng X, Peng A (2001) Degradation of dye solution by an activated carbon fiber electrode electrolysis system. J Hazard Mater. https://doi.org/10.1016/S0304-3894(01)00201-1

    Article  Google Scholar 

  40. Vyavahare G, Jadhav P, Jadhav J, Patil R, Aware C, Patil D et al (2019) Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.09.193

    Article  Google Scholar 

  41. Sun D, Zhang X, Wu Y, Liu X (2010) Adsorption of anionic dyes from aqueous solution on fly ash. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2010.05.015

    Article  Google Scholar 

  42. Deshannavar UB, Katageri BG, El-Harbawi M, Parab A, Acharya K (2017) Fly ash as an adsorbent for the removal of reactive blue 25 dye from aqueous solutions: optimization, kinetic and isotherm investigations. Proc Est Acad Sci. https://doi.org/10.3176/proc.2017.3.10

    Article  Google Scholar 

  43. Lin JX, Zhan SL, Fang MH, Qian XQ, Yang H (2008) Adsorption of basic dye from aqueous solution onto fly ash. J Environ Manag. https://doi.org/10.1016/j.jenvman.2007.01.001

    Article  Google Scholar 

  44. Guiza S, Bagane M, Al-Soudani AH, Ben AH (2004) Adsorption of basic dyes onto natural clay. Adsorpt Sci Technol. https://doi.org/10.1260/0263617041503462.

  45. Ganguli JN, Agarwal S (2012) Removal of a basic dye from aqueous solution by a natural kaolinitic clay-adsorption and kinetic studies. Adsorpt Sci Technol. https://doi.org/10.1260/0263-6174.30.2.171

    Article  Google Scholar 

  46. Contreras E, Sepúlveda L, Palma C (2012) Valorization of agroindustrial wastes as biosorbent for the removal of textile dyes from aqueous solutions. Int J Chem Eng. https://doi.org/10.1155/2012/679352

    Article  Google Scholar 

  47. Meili L, Lins PVS, Costa MT, Almeida RL, Abud AKS, Soletti JI et al (2019) Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2018.07.011

    Article  Google Scholar 

  48. Parab H, Sudersanan M, Shenoy N, Pathare T, Vaze B (2009) Use of agro-industrial wastes for removal of basic dyes from aqueous solutions. Clean - Soil Air Water. https://doi.org/10.1002/clen.200900158

    Article  Google Scholar 

  49. Saroj S, Singh SV, Mohan D (2015) Removal of colour (direct blue 199) from carpet industry wastewater using different biosorbents (maize cob, citrus peel and rice husk). Arab J Sci Eng. https://doi.org/10.1007/s13369-015-1630-0

    Article  Google Scholar 

  50. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. https://doi.org/10.1007/s11104-010-0464-5

    Article  Google Scholar 

  51. Bruun S, EL-Zehery T (2012) Biochar effect on the mineralization of soil organic matter. Pesqui Agropecu Bras. https://doi.org/10.1590/S0100-204X2012000500005.

  52. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - a review. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  53. Kim P, Hensley D, Labbé N (2014) Nutrient release from switchgrass-derived biochar pellets embedded with fertilizers. Geoderma. https://doi.org/10.1016/j.geoderma.2014.05.017

    Article  Google Scholar 

  54. Nartey OD, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Adv Mater Sci Eng. https://doi.org/10.1155/2014/715398

    Article  Google Scholar 

  55. Sullivan AL, Ball R (2012) Thermal decomposition and combustion chemistry of cellulosic biomass. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2011.11.022

    Article  Google Scholar 

  56. Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol. https://doi.org/10.1021/es1014423

    Article  Google Scholar 

  57. Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2011.11.005

    Article  Google Scholar 

  58. Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2011.11.018

    Article  Google Scholar 

  59. Kameyama K, Miyamoto T, Iwata Y, Shiono T (2016) Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Sci Plant Nutr. https://doi.org/10.1080/00380768.2015.1136553

    Article  Google Scholar 

  60. Guizani C, Jeguirim M, Valin S, Peyrot M, Salvador S (2019) The heat treatment severity index: a new metric correlated to the properties of biochars obtained from entrained flow pyrolysis of biomass. Fuel 244:61–68. https://doi.org/10.1016/J.FUEL.2019.01.170

    Article  Google Scholar 

  61. Mohan D (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/EF0502397

    Article  Google Scholar 

  62. Uchimiya M, Ohno T, He Z (2013) Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. J Anal Appl Pyrolysis 104:84–94. https://doi.org/10.1016/J.JAAP.2013.09.003

    Article  Google Scholar 

  63. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/J.CHEMOSPHERE.2013.10.071

    Article  Google Scholar 

  64. Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE et al (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/J.BIORTECH.2012.05.042

    Article  Google Scholar 

  65. Igalavithana AD, Mandal S, Niazi NK, Vithanage M, Parikh SJ, Mukome FND et al (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2017.1421844

    Article  Google Scholar 

  66. Weber K, Quicker P (2018) Properties of biochar. Fuel. https://doi.org/10.1016/j.fuel.2017.12.054

    Article  Google Scholar 

  67. Tang S, Wang Z, Liu Z, Zhang Y, Si B (2020) The role of biochar to enhance anaerobic digestion: a review. J Renew Mater 8:1033–52. https://doi.org/10.32604/jrm.2020.011887.

  68. Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long RL (2016) Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea mays l.) biochar and feasibility for carbon capture and energy balance. PLoS ONE. https://doi.org/10.1371/journal.pone.0156894

  69. Pituello C, Francioso O, Simonetti G, Pisi A, Torreggiani A, Berti A et al (2015) Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J Soils Sediments. https://doi.org/10.1007/s11368-014-0964-7

    Article  Google Scholar 

  70. Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere. https://doi.org/10.1016/j.chemosphere.2009.02.004

    Article  Google Scholar 

  71. Ghani W, Mohd A, da Silva G, Bachmann RT, Taufiq-Yap YH, Rashid U et al (2013) Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2012.10.017

    Article  Google Scholar 

  72. Bonelli PR, Buonomo EL, Cukierman AL (2007) Pyrolysis of sugarcane bagasse and co-pyrolysis with an Argentinean subbituminous coal. Energy Sources Part Recovery Util Environ Eff. https://doi.org/10.1080/00908310500281247

    Article  Google Scholar 

  73. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-020-09523-3

    Article  Google Scholar 

  74. Lehmann J, Joseph S (2012) Characteristics of biochar: microchemical properties. Biochar Environ Manag Sci Technol 2012:65–84. https://doi.org/10.4324/9781849770552-10

  75. Evans MR, Jackson BE, Popp M, Sadaka S (2021) Chemical properties of biochar materials manufactured from agricultural products common to the southeast United States. https://doi.org/10.21273/HORTTECH03481-16.

  76. Malinska K (2012) Biochar—a response to current environmental issues. Eng Prot Environ 15:387–403

    Google Scholar 

  77. Mia S, Singh B, Dijkstra FA (2017) Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. GCB Bioenergy. https://doi.org/10.1111/gcbb.12430

    Article  Google Scholar 

  78. Shaaban A, Se SM, Dimin MF, Juoi JM, Mohd Husin MH, Mitan NMM (2014) Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2014.01.021

    Article  Google Scholar 

  79. Zhao SX, Ta N, Wang XD (2017) Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies. https://doi.org/10.3390/en10091293

    Article  Google Scholar 

  80. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol. https://doi.org/10.1016/j.biortech.2010.11.018

    Article  Google Scholar 

  81. Brown TR, Wright MM, Brown RC (2011) Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels Bioprod Biorefining. https://doi.org/10.1002/bbb.254

    Article  Google Scholar 

  82. Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD (2011) A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol. https://doi.org/10.1089/ind.2011.7.384

    Article  Google Scholar 

  83. Rawat J, Saxena J, Sanwal P (2019) Biochar: a sustainable approach for improving plant growth and soil properties. Biochar Imperative Amend Soil Environ. https://doi.org/10.5772/intechopen.82151

    Article  Google Scholar 

  84. Abd-Elhamid AI, Emran M, El-Sadek MH, El-Shanshory AA, Soliman HMA, Akl MA et al (2020) Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Appl Water Sci. https://doi.org/10.1007/s13201-019-1128-0

    Article  Google Scholar 

  85. Sewu DD, Boakye P, Jung H, Woo SH (2017) Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.103

    Article  Google Scholar 

  86. Park JH, Wang JJ, Meng Y, Wei Z, DeLaune RD, Seo DC (2019) Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2019.04.029

    Article  Google Scholar 

  87. Zhang P, O’Connor D, Wang Y, Jiang L, Xia T, Wang L et al (2020) A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121286

    Article  Google Scholar 

  88. Hou Y, Huang G, Li J, Yang Q, Huang S, Cai J (2019) Hydrothermal conversion of bamboo shoot shell to biochar: preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2019.104694

    Article  Google Scholar 

  89. Mensah AK, Frimpong KA (2018) Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Int J Agron. https://doi.org/10.1155/2018/6837404

    Article  Google Scholar 

  90. Saletnik B, Zaguła G, Bajcar M, Tarapatskyy M, Bobula G, Puchalski C (2019) Biochar as a multifunctional component of the environment—a review. Appl Sci 9:1139. https://doi.org/10.3390/APP9061139

  91. Hou J, Zhang X, Liu S, Zhang S, Zhang Q (2020) A critical review on bioethanol and biochar production from lignocellulosic biomass and their combined application in generation of high-value byproducts. Energy Technol 8:2000025. https://doi.org/10.1002/ENTE.202000025

    Article  Google Scholar 

  92. Chakraborty I, Sathe SM, Dubey BK, Ghangrekar MM (2020) Waste-derived biochar: applications and future perspective in microbial fuel cells. Bioresour Technol. https://doi.org/10.1016/J.BIORTECH.2020.123587

  93. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  94. Enaime G, Baçaoui A, Yaacoubi A, Lübken M (2020) Biochar for wastewater treatment-conversion technologies and applications. Appl Sci Switz 10:3492. https://doi.org/10.3390/app10103492

    Article  Google Scholar 

  95. Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.122

    Article  Google Scholar 

  96. Schmidt HP, Wilson K (2014) The 55 uses of biochar. Biochar J

  97. Choi H-J, Choi Y, Rhee S-W (2019) A new concept of advanced management of hazardous waste in the Republic of Korea. Waste Manag Res 37:0734242X1986533. https://doi.org/10.1177/0734242X19865337

  98. Amin FR, Huang Y, He Y, Zhang R, Liu G, Chen C (2016) Biochar applications and modern techniques for characterization. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-016-1218-8

    Article  Google Scholar 

  99. Zhelezova A, Cederlund H, Stenström J (2017) Effect of biochar amendment and ageing on adsorption and degradation of two herbicides. Water Air Soil Pollut 228:216. https://doi.org/10.1007/s11270-017-3392-7

    Article  Google Scholar 

  100. Mongkolkajit J, Pullsirisombat J, Limtong S, Phisalaphong M (2011) Alumina-doped alginate gel as a cell carrier for ethanol production in a packed-bed bioreactor. Biotechnol Bioprocess Eng 16:505–512. https://doi.org/10.1007/S12257-010-0404-5

  101. Kong H, He J, Gao Y, Wu H, Zhu X (2011) Cosorption of phenanthrene and mercury(II) from aqueous solution by soybean stalk-based biochar. J Agric Food Chem 59:12116–12123. https://doi.org/10.1021/JF202924A

    Article  Google Scholar 

  102. Adeel M, Song X, Wang Y, Francis D, Yang Y (2017) Environmental impact of estrogens on human, animal and plant life: a critical review. Environ Int 99:107–119. https://doi.org/10.1016/J.ENVINT.2016.12.010

    Article  Google Scholar 

  103. Xu X, Cao X, Ling Z (2013) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92:955–961. https://doi.org/10.1016/J.CHEMOSPHERE.2013.03.009

  104. Xu W, Pignatello JJ, Mitch WA (2013) Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides. Environ Sci Technol 47:7129–7136. https://doi.org/10.1021/ES4012367

    Article  Google Scholar 

  105. Teixidó M, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45:10020–10027. https://doi.org/10.1021/ES202487H

    Article  Google Scholar 

  106. Cheng N, Wang B, Wu P, Lee X, Xing Y, Chen M et al (2021) Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ Pollut 273:116448. https://doi.org/10.1016/J.ENVPOL.2021.116448

    Article  Google Scholar 

  107. Bolan NS, Choppala G, Kunhikrishnan A, Park J, Naidu R (2013) Microbial transformation of trace elements in soils in relation to bioavailability and remediation. Rev Environ Contam Toxicol 225:1–56. https://doi.org/10.1007/978-1-4614-6470-9_1

    Article  Google Scholar 

  108. Rhee S-W (2020) Circular economy of municipal solid waste (MSW) in Korea. Springer, Singapore, pp 317–312. https://doi.org/10.1007/978-981-15-1052-6_17

  109. Mandal A, Singh N, Purakayastha TJ (2017) Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci Total Environ 577:376–385. https://doi.org/10.1016/J.SCITOTENV.2016.10.204

    Article  Google Scholar 

  110. Kanjanarong J et al (2017) Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms. Bioresour Technol 234:115–121. https://doi.org/10.1016/J.BIORTECH.2017.03.009

  111. Yang JE, Skogley EO, Ahmad M, Lee SS, Ok YS (2013) Carbonaceous resin capsule for vapor-phase monitoring of volatile hydrocarbons in soil: partitioning and kinetic model verification. Environ Geochem Health 35:715–725. https://doi.org/10.1007/S10653-013-9529-8

  112. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285. https://doi.org/10.1021/ACS.CHEMREV.5B00195

    Article  Google Scholar 

  113. Bogusz A, Oleszczuk P, Dobrowolski R (2015) Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour Technol 196:540–549. https://doi.org/10.1016/J.BIORTECH.2015.08.006

  114. Lu K et al (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manag 186:285–292. https://doi.org/10.1016/J.JENVMAN.2016.05.068

  115. Komkiene J, Baltrenaite E (2015) Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. Int J Environ Sci Technol 13:471–482. https://doi.org/10.1007/S13762-015-0873-3

  116. Choppala GK et al (2012) The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual 41:1175–1184. https://doi.org/10.2134/JEQ2011.0145

  117. Abdul G, Zhu X, Chen B (2017) Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chem Eng J 319:9–20. https://doi.org/10.1016/j.cej.2017.02.074

    Article  Google Scholar 

  118. Li C, Zhang L, Gao Y, Li A (2018) Facile synthesis of nano ZnO/ZnS modified biochar by directly pyrolyzing of zinc contaminated corn stover for Pb(II), Cu(II) and Cr(VI) removals. Waste Manag 79:625–637. https://doi.org/10.1016/j.wasman.2018.08.035

    Article  Google Scholar 

  119. Zeng Z, Ye S, Wu H, Xiao R, Zeng G, Liang J et al (2019) Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci Total Environ 648:206–217. https://doi.org/10.1016/j.scitotenv.2018.08.108

    Article  Google Scholar 

  120. Li M, Liu H, Chen T, Dong C, Sun Y (2019) Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci Total Environ 651:1020–1028. https://doi.org/10.1016/j.scitotenv.2018.09.259

    Article  Google Scholar 

  121. Zhang D, Li Y, Tong S, Jiang X, Wang L, Sun X et al (2018) Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene. RSC Adv 8:22161–22168. https://doi.org/10.1039/C8RA04314K

    Article  Google Scholar 

  122. Khataee A, Kayan B, Gholami P, Kalderis D, Akay S (2017) Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite. Ultrason Sonochem 39:120–128. https://doi.org/10.1016/j.ultsonch.2017.04.018

    Article  Google Scholar 

  123. Song Z, Lian F, Yu Z, Zhu L, Xing B, Qiu W (2014) Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem Eng J 242:36–42. https://doi.org/10.1016/j.cej.2013.12.061

    Article  Google Scholar 

  124. Shang G, Shen G, Liu L, Chen Q, Xu Z (2013) Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresour Technol 133:495–499. https://doi.org/10.1016/J.BIORTECH.2013.01.114

    Article  Google Scholar 

  125. Xy Y, Gg Y, Rs K (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671. https://doi.org/10.1016/J.CHEMOSPHERE.2009.04.001

    Article  Google Scholar 

  126. Brebu M, Vasile C (2010) Thermal degradation of lignin—a review

  127. Domínguez-Avila AA, González-Aguilar GA (2018) Lipids. Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, New York, pp 273–92. https://doi.org/10.1016/B978-0-12-813278-4.00013-0

  128. Hu X, Nango K, Bao L, Li T, Hasan MDM, Li C-Z (2019) High yields of solid carbonaceous materials from biomass. Green Chem 21:1128–1140. https://doi.org/10.1039/C8GC03153C

    Article  Google Scholar 

  129. Sewu DD, Lee DS, Tran HN, Woo SH (2019) Effect of bentonite-mineral co-pyrolysis with macroalgae on physicochemical property and dye uptake capacity of bentonite/biochar composite. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2019.08.017

    Article  Google Scholar 

  130. Nautiyal P, Subramanian KA, Dastidar MG (2016) Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry. J Environ Manag. https://doi.org/10.1016/j.jenvman.2016.07.063

    Article  Google Scholar 

  131. Sewu DD, Boakye P, Woo SH (2017) Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresour Technol. https://doi.org/10.1016/j.biortech.2016.11.009

    Article  Google Scholar 

  132. Lian F, Cui G, Liu Z, Duo L, Zhang G, Xing B (2016) One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. J Environ Manag. https://doi.org/10.1016/j.jenvman.2016.03.043

    Article  Google Scholar 

  133. Jung KW, Choi BH, Hwang MJ, Choi JW, Lee SH, Chang JS et al (2017) Adsorptive removal of anionic azo dye from aqueous solution using activated carbon derived from extracted coffee residues. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.08.045

    Article  Google Scholar 

  134. Zhu K, Wang X, Chen D, Ren W, Lin H, Zhang H (2019) Wood-based biochar as an excellent activator of peroxydisulfate for acid orange 7 decolorization. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.05.087

    Article  Google Scholar 

  135. Silvestri S, Gonçalves MG, Da Silva Veiga PA, Matos TTDS, Peralta-Zamora P, Mangrich AS (2019) TiO2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of acid orange 7 dye. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.102879

    Article  Google Scholar 

  136. Yao X, Ji L, Guo J, Ge S, Lu W, Cai L et al (2020) Magnetic activated biochar nanocomposites derived from Wakame and its application in methylene blue adsorption. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.122842

    Article  Google Scholar 

  137. Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresour Technol. https://doi.org/10.1016/j.biortech.2013.04.116

    Article  Google Scholar 

  138. Sumalinog DAG, Capareda SC, de Luna MDG (2018) Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes. J Environ Manag. https://doi.org/10.1016/j.jenvman.2018.01.010

    Article  Google Scholar 

  139. Biswas S, Mohapatra SS, Kumari U, Meikap BC, Sen TK (2020) Batch and continuous closed circuit semi-fluidized bed operation: removal of MB dye using sugarcane bagasse biochar and alginate composite adsorbents. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103637

    Article  Google Scholar 

  140. Hameed BH, El-Khaiary MI (2008) Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2007.09.019

    Article  Google Scholar 

  141. Choudhary M, Kumar R, Neogi S (2020) Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122441

    Article  Google Scholar 

  142. Eltaweil AS, Ali Mohamed H, Abd El-Monaem EM, El-Subruiti GM (2020) Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: characterization, adsorption kinetics, thermodynamics and isotherms. Adv Powder Technol. https://doi.org/10.1016/j.apt.2020.01.005

    Article  Google Scholar 

  143. di Chen Y, Lin YC, Ho SH, Zhou Y, Qi Ren N (2018) Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.02.094

  144. Wu J, Yang J, Feng P, Huang G, Xu C, Lin B (2020) High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125734

    Article  Google Scholar 

  145. Saif Ur Rehman M, Kim I, Rashid N, Adeel Umer M, Sajid M, Han JI (2016) Adsorption of brilliant green dye on biochar prepared from lignocellulosic bioethanol plant waste. Clean Soil Air Water. https://doi.org/10.1002/clen.201300954

  146. Qiu Y, Zheng Z, Zhou Z, Sheng GD (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol. https://doi.org/10.1016/j.biortech.2009.05.054

    Article  Google Scholar 

  147. Wu J, Yang J, Huang G, Xu C, Lin B (2020) Hydrothermal carbonization synthesis of cassava slag biochar with excellent adsorption performance for Rhodamine B. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119717

    Article  Google Scholar 

  148. Sanda O, Amoo KI, Taiwo EA (2018) Studies on the adsorption of indigo dye from aqueous media onto carbonised sugarcane bagasse. Niger J Basic Appl Sci. https://doi.org/10.4314/njbas.v25i1.6

    Article  Google Scholar 

  149. Mahmoud ME, Nabil GM, El-Mallah NM, Bassiouny HI, Kumar S, Abdel-Fattah TM (2016) Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified switchgrass biochar adsorbent. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2016.03.020

    Article  Google Scholar 

  150. Zazycki MA, Godinho M, Perondi D, Foletto EL, Collazzo GC, Dotto GL (2018) New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.10.007

    Article  Google Scholar 

  151. Liu N, Zhu M, Wang H, Ma H (2016) Adsorption characteristics of Direct Red 23 from aqueous solution by biochar. J Mol Liq. https://doi.org/10.1016/j.molliq.2016.08.061

    Article  Google Scholar 

  152. Kelm MAP, da Silva Júnior MJ, de Barros Holanda SH, de Araujo CMB, de Assis Filho RB, Freitas EJ et al (2019) Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-3833-x

    Article  Google Scholar 

  153. Zazycki MA, Borba PA, Silva RNF, Peres EC, Perondi D, Collazzo GC et al (2019) Chitin derived biochar as an alternative adsorbent to treat colored effluents containing methyl violet dye. Adv Powder Technol. https://doi.org/10.1016/j.apt.2019.04.026

    Article  Google Scholar 

  154. Vijayaraghavan K, Ashokkumar T (2019) Characterization and evaluation of reactive dye adsorption onto biochar derived from Turbinaria conoides biomass. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soumya Pandit or Sadanand Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Pandit, C., Pandit, S. et al. Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J Mater Cycles Waste Manag 24, 852–876 (2022). https://doi.org/10.1007/s10163-022-01391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01391-z

Keywords

Navigation