Skip to main content
Log in

Risk Assessment and Ranking of Metals Using FDAHP and TOPSIS

Gefährdungsabschätzung und Einordnung von Metallen durch die Anwendung von FDAHP und TOPSIS

Relevamiento del Riesgo y Clasificación de Metales Usando FDAHP y TOPSIS

利用FDAHP和TOPSIS方法的金属污染风险评估与排序

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The sediment of the Sarcheshmeh copper mine in Iran contains high concentrations of trace metals. In this risk assessment study, criteria such as contamination factor, pollution load index, and geoaccumulation index were used to assess levels of Co, Cu, Mo, Zn, Cr, Mn, Ni, Pb, Ti, and Fe in the mine sediment released to the tailings dam. Expert opinions on the relative importance of each of the indicators were used to assign a final weighting of the criteria using the fuzzy Delphi analytic hierarchy process, and the metals in the sediments of the study area were ranked and clustered using the TOPSIS method. Based on the results, the metals were clustered into 10 categories with copper, iron, and zinc having the highest pollution and critical risk.

Zusammenfassung

Das Sediment des Sarchesmeh-Kupferbergwerkes im Iran zeigt hohe Konzentrationen an Spurenmetallen. Bei der vorliegenden Studie zur Gefährdungsabschätzung wurden die Kriterien wie der Kontaminationsfaktor, Umweltbelastungsindex und Geoakkumulationsindex verwendet, um den Grad der Freisetzung von Co, Cu, Mo, Zn, Cr, Mn, Ni, Pb, Ti und Fe aus den Bergbausedimenten in die Staudamm zu bestimmen. Zur relativen Wichtung der einzelnen Indikatoren wurden Expertenmeinungen eingeholt und letztendlich in einen fuzzy Delphi analytic hierarchy process verarbeitet. Die Metalle in den Sedimenten wurden anschließend mit der TOPSIS-Methode gewichtet und klassiert. Auf Basis der Ergebnisse erfolgte die Klassierung der oben genannten Metalle in 10 verschiedene Kategorien, wobei Kupfer, Eisen und Zink die größte Verschmutzung verursachen und bereits ein kritisches Niveau erreicht haben.

Resumen

El sediment de la mina de cobre Sarcheshmeh en Irán contiene altas concentraciones de metales traza. En este estudio de relevamiento ambiental, se usaron criterios tales como factor de contaminación, índice de polución e índice de geoacumulación para relevar los niveles de Co, Cu, Mo, Zn, Cr, Mn, Ni, Pb, Ti y Fe en los sedimentos de la mina provenientes del dique de cola. Se utilizaron opiniones expertas sobre la importancia relativa de cada indicador para asignar un peso final del criterio utilizando el proceso analítico hierático difuso Delphi (FDAHP) y los metales de los sedimentos en el área de estudio fueron clasificados y agrupados usando el método TOPSIS. En base a estos resultados, los metales fueron agrupados en 10 categorías con cobre, hierro y cinc presentando la máxima polución y riesgo crítico.

抽象

伊朗Sarcheshmeh铜矿矿床沉积中含有较多微量金属元素。在污染风险评估中,本文以污染因子、污染负荷指数和地质积累指数等作为评价铜矿释放至尾矿坝中的Co、 Cu、 Mo、 Zn、 Cr、 Mn、 Ni、 Pb、 Ti和Fe等污染评价指标。通过模糊德尔菲层次分析法(FDAHP)实现每一评价指标的重要性专家意见权重分配,利用TOPSIS方法实现研究区内金属离子排序、聚类。基于以上分析结果,研究区尾矿坝内金属离子被分为10类,铜、铁和锌具有最大污染风险。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238

    Article  Google Scholar 

  • Adama P, Arienzo M, Imporato M, Noimo D, Nardi G, Stanzione D (2005) Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 61:800–809

    Article  Google Scholar 

  • Adomako D, Nyarko BJB, Dampare SB, Serfor-Armah Y, Osae S, Fianko JR, Akaho EH (2008) Determination of toxic elements in waters and sediments from River Subin in the Ashanti region of Ghana. Environ Monit Assess 141:165–175

    Article  Google Scholar 

  • Audry S, Schafer J, Blanc G, Jouanneau JM (2004) Fifty- year sedimentary record of heavy metal pollution(Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ Pollut 132(3):413–426

    Article  Google Scholar 

  • Bermejo Santos JC, Beltran R, Gomez Araiza JL (2003) Spatial variations of heavy metals contamination in sediments from Odiel River (southwest Spain). Environ Int 29(1):69–77

    Article  Google Scholar 

  • Chen CW, Kao CM, Chen CF, Dong CD (2007) Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66(8):1431–1440

    Article  Google Scholar 

  • Deb D, Deshpande VN, Das KC (2008) Assessment of water quality around surface coal mines using principal component analysis and fuzzy reasoning techniques. Mine Water Environ 27(3):183–193

    Article  Google Scholar 

  • Ghrefat H, Yusuf N (2006) Assessing Mn, Fe, Cu, Zn and Cd pollution in bottom sediments of Wadi AL- Arab Dam, Jordan. Chemosphere 65:2114–2121

    Article  Google Scholar 

  • Golestanifar M, Ahangari K (2012) Choosing an optimal groundwater lowering technique for open pit mines. Mine Water Environ 31(3):192–198

    Article  Google Scholar 

  • Gonzales-Macias C, Schifter I, Liuch-Cota DB, Mendez-Rodriguez L, Hernandez-Vazquez S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118:211–230

    Article  Google Scholar 

  • Hoseinie SH, Ataei M, Osanloo M (2009) A new classification system for evaluating rock penetrability. Int J Rock Mech Min Sci 46:1329–1340

    Article  Google Scholar 

  • Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Kaufmann A, Gupta MM (1988) Fuzzy mathematical models in engineering and management science. Elsevier, Amsterdam

    Google Scholar 

  • Liu YC, Chen CS (2007) A new approach for application of rock mass classification on rock slope stability assessment. Eng Geol 89:129–143

    Article  Google Scholar 

  • Muller G (1979) Schwermetalle in den sedimenten des Rheins-Veranderungen seit 1971. Umschau 79(24):778–783

    Google Scholar 

  • Munendra S, Muller G, Sinhg B (2002) Heavy metals in freshly deposited stream sediments of rivers associated with urbanization of the Ganga plain, India. Water Air Soil Pollut 141:35–54

    Article  Google Scholar 

  • Qishlag A, Moore F, Forghani G (2007) Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environ Monit Assess 149:254–262

    Google Scholar 

  • Reddy M, Basha S, Sravan Kumar VG, Joshi HV, Ramachandraiah G (2004) Distribution, enrichment and accumulation of heavy metals in coastal sediments of the Alang-Sosiya ship scrapping yard, India. Mar Pollut Bull 48:1055–1059

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, NYC

    Google Scholar 

  • Selvaraj K, Rom Mohan V, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India; geochemical and statistical approaches. Mar Pollut Bull 49:174–185

    Article  Google Scholar 

  • Shayestehfar MR, Rezaei A (2010) Methodology presentation in decreasing the environmental of Sarcheshmeh copper mine with the help of geochemical data. In: Proceedings of 27th Symposium on Geosciences, Tehran, Iran, p 254–264

  • Shayestehfar MR, Kariminasab S, Mohammadalizadeh H (2007) Mineralogy, petrology, and chemistry studies to evaluate oxide copper ores for heap leaching in Sarcheshmeh copper mine, Kerman, Iran. J Hazard Mater 154(1–3):602–612

    Google Scholar 

  • Singh TN, Singh VK, Sinha S (2006) Prediction of cadmium removal using an artificial neural network and a neuro-fuzzy technique. Mine Water Environ 25(4):214–219

    Article  Google Scholar 

  • Vardes J, Var Gas G, Sifeddine M (2005) Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23 AS), northern Chile: geochemical and statistical approach. Mar Pollut Bull 50:1558–1568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Tavakoli Mohammadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayaty, M., Tavakoli Mohammadi, M.R., Rezaei, A. et al. Risk Assessment and Ranking of Metals Using FDAHP and TOPSIS. Mine Water Environ 33, 157–164 (2014). https://doi.org/10.1007/s10230-014-0263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0263-y

Keywords

Navigation