Skip to main content
Log in

Occurrence of rogue sea states and consequences for marine structures

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The frequency of occurrence of combined wave systems like wind sea and swell may increase in some ocean areas due to the observed change of storm tracks. These combined sea states, when crossing at a particular angle, may lead to more frequent occurrence of rogue events. The present study addresses these rogue-wave-prone sea states and their probabilities of occurrence. The analysis is based on hindcast data from the North Atlantic, the North Sea, the Norwegian Sea, Nigeria and Australia and supported by numerical simulations performed by the Higher Order Spectral Method (HOSM, West et al. J Geophys Res 92:11803–11824, 1987). The hindcast data have been generated by the wave model WAM. Long-term probabilistic description of significant wave height and spectral peak period is established for the selected locations and probability of occurrence of crossing rogue-wave-prone sea states is indicated. Further, the occurrence of individual rogue waves in low, intermediate and high sea states is also evaluated. The results are discussed from the perspective of design and operations of ships and offshore structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Badulin SI, Shrira VI, Kharif C, Ioualalen M (1995) On two approaches to the problem of instability of short‐crested water waves. J Fluid Mech 303:297–326

    Article  Google Scholar 

  • Bascheck B, Imai J (2011) Rogue wave observations off the US West Coast. Oceanography 24:158–165. doi:10.5670/oceanog.2011.35

    Article  Google Scholar 

  • Bitner-Gregersen EM, Toffoli A (2012) On the probability of occurrence of rogue waves. Nat Hazards Earth Syst Sci 12(1–12):2012. doi:10.5194/nhess-12-1-2012

    Google Scholar 

  • British Maritime Technology (Hogben N, Da Cunha LF, Oliver HN) (1986) Global wave statistics. Unwin Brothers Limited, London, England

  • Cavaleri L, Bertotti L, Torrisi L, Bitner-Gregersen E, Serio M, Onorato M (2012) Rogue waves in crossing seas: the Louis Majesty accident. J Geophys Res 117:C00J10. doi:10.1029/2012JC007923

    Google Scholar 

  • Christou M, Ewans KC (2011) Examining a comprehensive data set containing thousands of freak wave events. Part 2—analysis and findings. Proceedings of OMAE 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. 19–24 June, 2011, Rotterdam, The Netherlands

  • Didenkulova I (2010) Shapes of freak waves in the coastal zone of the Baltic Sea (Tallinn Bay). Boreal Environ Res 16:138–148

    Google Scholar 

  • Didenkulova I, Pelinovsky E (2011) Rogue waves in nonlinear hyperbolic systems (shallow-water framework). Nonlinearity 24:R1–R18

    Article  Google Scholar 

  • Dysthe K, Krogstad HE, Müller P (2008) Oceanic rogue waves. Annu Rev Fluid Mech 40:287–310

    Article  Google Scholar 

  • Hanson JL, Phillips OM (2001) Automated analysis of ocean surface directional wave spectra. J Atmos Ocean Technol 18:277–293

    Article  Google Scholar 

  • Hauser D, Kahma KK, Krogstad HE, Lehner S, Monbaliu J, Wyatt LW (eds) (2005) Measuring and analysing the directional spectrum of ocean waves. COST Office, Brussels

    Google Scholar 

  • IACS (2000) IACS Rec. 34. Standard Wave Data. Rev.1, Corr. Nov. 2001

  • Ioualalen M, Kharif C (1994) On the subharmonic instabilities of steadies three‐dimensional deep water waves. J Fluid Mech 262:265–291

    Article  Google Scholar 

  • Janssen PAEM (2003) Nonlinear four‐wave interaction and freak waves. J Phys Oceanogr 33:863–884

    Article  Google Scholar 

  • Kharif C, Pelinovsky E, Slunyaev A (2009) Rogue waves in the ocean. In: Advances in geophysical and environmental mechanics and mathematics. Springer, Berlin

    Google Scholar 

  • NORSOK (2007) Standard N-003: action and action effects. Norwegian Technology Standardization, Oslo

    Google Scholar 

  • Onorato M, Osborne AR, Serio M, Bertone S (2001) Freak waves in random oceanic sea states. Phys Rev Lett 86:5831–5834

    Article  Google Scholar 

  • Onorato M, Osborne A, Serio M, Cavaleri L, Brandini C, Stansberg C (2006a) Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. Eur J Mech B/Fluids 25:586–601

    Article  Google Scholar 

  • Onorato M, Osborne A, Serio M (2006b) Modulation instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys Rev Lett 96:014503. doi:10.1103/PhysRevLett.96.014503

  • Onorato M, Cavaleri L, Fouques S, Gramstad O, Janssen PAEM, Monbaliu J, Osborne AR, Pakozdi C, Serio M, Stansberg CT, Toffoli A, Trulsen K (2009) Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J Fluid Mech 627:235–257

    Article  Google Scholar 

  • Onorato M, Proment D, Toffoli A (2010) Freak waves in crossing seas. Eur Phys J 185:45–55

    Google Scholar 

  • Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi FT (2013) Rogue waves and their generating mechanisms in different physical contexts. Phys Rep 528:47–89

    Article  Google Scholar 

  • Osborne AR (2010) Nonlinear ocean waves and the inverse scattering transform. In: International geophysics series. Elsevier, San Diego

    Google Scholar 

  • Roskes GJ (1976) Nonlinear multiphase deep‐water wavetrains. Phys Fluids 19:1253–1254. doi:10.1063/1.861609

    Article  Google Scholar 

  • Sergeeva A, Pelinovsky E, Talipova T (2011) Nonlinear random wave field in shallow water: variable Korteweg–de Vries framework. Nat Hazards Earth Syst Sci 11:323–330

    Article  Google Scholar 

  • Shemer L, Sergeeva A, Slunyaev A (2010) Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random field evolution: experimental validation. Phys Fluids 22:016601. doi:10.1063/1.3290240

    Article  Google Scholar 

  • Shukla P, Kourakis I, Eliasson B, Marklund M, Stenflo L (2006) Instability and evolution of nonlinearly interacting water waves. Phys Rev Lett 97:94501. doi:10.1103/PhysRevLett.97.094501

    Article  Google Scholar 

  • Slunyaev A (2010) Freak wave events and the wave phase coherence. Eur Phys J Spec Top 185(1):67–80

    Article  Google Scholar 

  • Socquet-Juglard H, Dysthe K, Trulsen K, Krogstad HE, Liu J (2005) Probability distributions of surface gravity waves during spectral changes. J Fluid Mech 542:195–216

    Article  Google Scholar 

  • Tanaka M (2001) Verification of Hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations. J Fluid Mech 444:199–221

    Article  Google Scholar 

  • Tanaka M (2007) On the role of resonant interactions in the short-term evolution of deep-water ocean spectra. J Phys Oceanogr 37:1022–1036

    Article  Google Scholar 

  • Toffoli A, Lefevre JM, Bitner-Gregersen E, Monbaliu J (2005) Towards the identification of warning criteria: analysis of a ship accident database. Appl Ocean Res 27(6):281–291

    Article  Google Scholar 

  • Toffoli A, Gramstad O, Trulsen K, Monbaliu J, Bitner-Gregersen EM, Onorato M (2010) Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J Fluid Mech 664:313–336

    Article  Google Scholar 

  • Toffoli A, Bitner-Gregersen EM, Osborne AR, Serio M, Monbaliu J, Onorato M (2011) Extreme waves in random crossing seas: laboratory experiments and numerical simulations. Geophys Res Lett 38:L06605. doi:10.1029/201, 5 pp

    Article  Google Scholar 

  • Toffoli A, Waseda T, Houtani H, Kinoshita T, Collins K, Proment D, Onorato M (2013) Excitation of rogue waves in a variable medium: an experimental study on the interaction of water waves and currents. Phys Rev E 87, 051201(R)

  • Waseda T, Kinoshita T, Tamura H (2009) Evolution of a random directional wave and freak wave occurrence. J Phys Oceanogr 39(3):621–639

    Article  Google Scholar 

  • Waseda T, Hallerstig M, Ozaki K, Tomita H (2011) Enhanced freak wave occurrence with narrow directional spectrum in the North Sea. Geophys Res Lett 38: doi:10.1029/2011GL047779

  • West BJ, Brueckner KA, Jand RS, Milder DM, Milton RL (1987) A new method for surface hydrodynamics. J Geophys Res 92:11803–11824

    Article  Google Scholar 

  • Xiao W, Liu Y, Wu G, Yue DKP (2013) Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J Fluid Mech 720:357–392. doi:10.1017/jfm.2013.37

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Norwegian Research Council project ExWaCli (the Project No. 226239) and the E.U. project EXTREME SEAS (SCP8-GA-2009-234175). The authors are indebted to the Norwegian Meteorological Institute and Shell International Exploration and Production B.V. for providing the wave data. The authors thank Miguel Onorato and Alexey Slunyaev for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elzbieta M. Bitner-Gregersen.

Additional information

Responsible Editor: Alexander V. Babanin

This article is part of the Topical Collection on the 13th International Workshop on Wave Hindcasting and Forecasting in Banff, Alberta, Canada October 27 - November 1, 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitner-Gregersen, E.M., Toffoli, A. Occurrence of rogue sea states and consequences for marine structures. Ocean Dynamics 64, 1457–1468 (2014). https://doi.org/10.1007/s10236-014-0753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0753-2

Keywords

Navigation