Skip to main content
Log in

Evaluation of wave model performance in the South Atlantic Ocean: a study about physical parameterization and wind forcing calibration

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This paper evaluates the performance of the spectral wave model WAVEWATCH III for the South Atlantic Ocean forced by wind inputs from the most recent reanalyses, NCEP/CFSR and ECMWF/ERA5, combined with two different source terms: ST4 and ST6. A calibration is performed considering 1 year (2012) and 31 simulations, evaluated against altimeter and buoy data through six error metrics and Q-Q plots. Assessment results suggest that both ST4 and ST6 provide good results when WAVEWATCH III is properly adjusted for the wind input. Nevertheless, the wave model presents a positive bias of significant wave height when forced by CFSR winds that requires attention. The investigation in the spectral domain indicates a better performance of wave simulations forced by ERA5 winds, especially for wave periods below 10 s. For wave periods above 10 s, the choice of source term package becomes more important. In this regard, ST4 parameterization combined with ERA5 winds presents the best results for the region. The optimal range of calibration parameters for each wind input and source term package is reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

The wave buoys data that support the findings of this study are available in the Brazilian National Program (PNBOIA) repository (link below). The altimetry data is from Ifremer Merged Altimeter Database and it is available in CERSAT repository through the link below. The wind products (from CFSR and ERA5) are also available to the public and were derived from the following public domain resources:

PNBOIA - https://www.marinha.mil.br/chm/dados-do-goos-brasil/pnboia-mapa

CERSAT - http://cersat.ifremer.fr/thematic-portals/projects/globwave

CFSR - https://rda.ucar.edu/datasets/ds094.1/

ERA5 - https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

References

  • Alves JHGDM, Ribeiro EO, Matheson GSG, Lima JAM, Ribeiro CEP (2009) Reconstituição do clima de ondas no sul-sudeste brasileiro entre 1997 e 2005. Rev Brasil Geofís 27:427–445

    Article  Google Scholar 

  • Amante C, Eakins B (2009) Etopo1 1 arc-minute global relief model: procedures, data sources and analysis Noaa technical memorandum. National Geophysical Data Center, NOAA

  • Ardhuin F, Chapron B, Collard F (2009) Observation of swell dissipation across oceans. Geophys Res Lett 36(6)

  • Ardhuin F, Rogers E, Babanin AV, Filipot J -F, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre J -M, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part i: definition, calibration, and validation. J Phys Oceanogr 40(9):1917–1941

    Article  Google Scholar 

  • Babanin AV, Jiang H (2017) Ocean swell: how much do we know. In: International conference on offshore mechanics and arctic engineering, volume 3A: structures, safety and reliability of international conference on offshore mechanics and arctic engineering

  • Bidlot J -R, Janssen P, Abdalla S (2007) A revised formulation of ocean wave dissipation and its model impact. Technical Memorandum, p 27

  • Campos R, Ribeiro C, De Camargo R (2012) Extreme wave analysis in campos basin (Rio de Janeiro - Brazil) associated with extra-tropical cyclones and anticyclones. In: Proceedings of the international conference on offshore mechanics and arctic engineering - OMAE, vol 2

  • Campos R, Guedes Soares C (2016a) Comparison and assessment of three wave hindcasts in the north Atlantic ocean. J Oper Oceanogr 9:1–19

    Google Scholar 

  • Campos RM, Guedes Soares C (2016b) Estimating extreme waves in Brazil using regional frequency analysis. In: Proceedings of the international conference on offshore mechanics and arctic engineering - OMAE, volume 3: structures, safety and reliability

  • Campos R, Alves J, Soares CG, Guimaraes L, Parente C (2018) Extreme wind-wave modeling and analysis in the south Atlantic ocean. Ocean Model 124:75–93

    Article  Google Scholar 

  • Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds. Ocean Model 70:189–206. Ocean Surface Waves

    Article  Google Scholar 

  • Cuchiara D, Fernandes E, Strauch J, Winterwerp J, Calliari L (2009) Determination of the wave climate for the southern Brazilian shelf. Cont Shelf Res 29:545–555

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

  • Gan MA, Rao VB (1991) Surface cyclogenesis over south America. Mon Weather Rev 119 (5):1293–1302

    Article  Google Scholar 

  • Godoi V, Ribeiro C, Rebelo A (2014) An overview of events of high sea waves at the mouth of guanabara bay. Pan-Am J Aquat Sci 9:70–87

    Google Scholar 

  • Gramcianinov C, Campos R, de Camargo R, Hodges K, Guedes Soares C, da Silva Dias P (2020a) Analysis of atlantic extratropical storm tracks characteristics in 41 years of era5 and cfsr/cfsv2 databases. Ocean Eng 216:108111

    Article  Google Scholar 

  • Gramcianinov C, Campos R, Guedes Soares C, de Camargo R (2020b) Extreme waves generated by cyclonic winds in the western portion of the south Atlantic ocean. Ocean Eng 213:107745

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J-N (2020) The era5 global reanalysis. Q J R Meteorol Soc 146(730):1999– 2049

    Article  Google Scholar 

  • Innocentini V, Caetano E, Carvalho JT (2014) A procedure for operational use of wave hindcasts to identify landfall of heavy swell. Weather Forecast 29(2):349–365

    Article  Google Scholar 

  • Janssen PAEM (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr 21(11):1631–1642

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The ncep/ncar 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Article  Google Scholar 

  • Kalourazi MY, Siadatmousavi SM, Yeganeh-Bakhtiary A, Jose F (2021) Wavewatch-iii source terms evaluation for optimizing hurricane wave modeling: a case study of hurricane Ivan. Oceanologia 63 (2):194–213

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahory H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The jra-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II 93(1):5–48

    Article  Google Scholar 

  • Komen GJ, Hasselmann S, Hasselmann K (1984) On the existence of a fully developed wind-sea spectrum. J Phys Oceanogr 14(8):1271–1285

    Article  Google Scholar 

  • Liu Q, Rogers WE, Babanin AV, Young IR, Romero L, Zieger S, Qiao F, Guan C (2019) Observation-based source terms in the third-generation wave model WAVEWATCH III: updates and verification. J Phys Oceanogr 49(2):489–517

    Article  Google Scholar 

  • Parente CE (1999) Uma Nova técnica Espectral para análise Direcional de Ondas. PhD thesis, Federal University of Rio de Janeiro, Rio de Janeiro

  • Pereira HPP, Violante-Carvalho N, Nogueira ICM, Babanin A, Qingxiang L, de Pinho UF, Nascimento F, Parente CE (2017) Wave observations from an array of directional buoys over the southern Brazilian coast. Ocean Dyn 67:1616–7228

    Article  Google Scholar 

  • Pianca C, Mazzini PLF, Siegle E (2010) Brazilian offshore wave climate based on nww3 reanalysis. Braz J Oceanogr 58:53–70

    Article  Google Scholar 

  • Queffeulou P, Croizé-Fillon D (2017) Global altimeter swh data set–version 11.4. Technical report, IFREMER

  • Rapizo H, Durrant T, Babanin A (2018) An assessment of the impact of surface currents on wave modeling in the southern ocean. Ocean Dyn 68

  • Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010) South Atlantic ocean cyclogenesis climatology simulated by regional climate model (regcm3). Clim Dyn 35:1432–0894

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) Merra: Nasa’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The ncep climate forecast system version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Semedo A, Sušelj K, Rutgersson A, Sterl A (2011) A global view on the wind sea and swell climate and variability from era-40. J Clim 24

  • Stopa JE (2018) Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets. Ocean Model 127:55–69

    Article  Google Scholar 

  • Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ecmwf reanalysis interim and the ncep climate forecast system reanalysis. Ocean Model 75:65–83

    Article  Google Scholar 

  • Stopa JE, Ardhuin F, Babanin A, Zieger S (2016) Comparison and validation of physical wave parameterizations in spectral wave models. Ocean Model 103:2–17. Waves and coastal, regional and global processes

    Article  Google Scholar 

  • Tolman HL, Chalikov D (1996) Source terms in a third-generation wind wave model. J Phys Oceanogr 26(11):2497–2518

    Article  Google Scholar 

  • Valiente NG, Saulter A, Edwards JM, Lewis HW, Castillo Sanchez JM, Bruciaferri D, Bunney C, Siddorn J (2021) The impact of wave model source terms and coupling strategies to rapidly developing waves across the north-west European shelf during extreme events. J Mar Sci Eng 9(4)

  • Violante-Carvalho N, Parente CE, Robinson IS, Nunes LMP (2002) On the growth of wind-generated waves in a swell-dominated region in the south Atlantic. J Offshore Mech Arct Eng 124: 14–21

    Article  Google Scholar 

  • WW3DG (2019) User manual and system documentation of WAVEWATCH III version 6.07, The WAVEWATCH III Development Group. Tech. Note 326 pp. + Appendices, NOAA/NWS/NCEP/MMAB

  • Young IR (1999) Seasonal variability of the global ocean wind and wave climate. Int J Climatol 19(9):931–950

    Article  Google Scholar 

  • Young IR, Banner ML, Donelan MA, McCormick C, Babanin AV, Melville WK, Veron F (2005) An integrated system for the study of wind-wave source terms in finite-depth water. J Atmos Ocean Technol 22(7):814–831

    Article  Google Scholar 

  • Zieger S, Babanin A, Rogers W, Young I (2015) Observation-based source terms in the third-generation wave model wavewatch. Ocean Model 96

Download references

Acknowledgements

The authors would like to thank the Brazilian National Buoy Program (PNBOIA) of the Brazilian Navy for providing the wave data, and the Federal University of Rio de Janeiro through Laboratório de Instrumentação Oceanográfica for all the technical and scientific support. The authors acknowledge Petrobras for the collaboration and ANP (Agência Nacional de Petróleo, Gás Natural e Biocombustíveis) for the research fund. The third author has been funded by the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a Cooperative Institute of the University of Miami and the National Oceanic and Atmospheric Administration, cooperative agreement NA20OAR4320472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia Kaiser.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Andrea Pinones

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, J., Nogueira, I.C.M., Campos, R.M. et al. Evaluation of wave model performance in the South Atlantic Ocean: a study about physical parameterization and wind forcing calibration. Ocean Dynamics 72, 137–150 (2022). https://doi.org/10.1007/s10236-021-01495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-021-01495-4

Keywords

Navigation