Skip to main content
Log in

Modelling apical columnar epithelium mechanics from circumferential contractile fibres

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Simple columnar epithelia are formed by individual epithelial cells connecting together to form single cell high sheets. They are a main component of many important body tissues and are heavily involved in both normal and cancerous cell activities. Prior experimental observations have identified a series of contractile fibres around the circumference of a cross section located in the upper (apical) region of each cell. While other potential mechanisms have been identified in both the experimental and theoretical literature, these circumferential fibres are considered to be the most likely mechanism controlling movement of this cross section. Here, we investigated the impact of circumferential contractile fibres on movement of the cross section by creating an alternate model where movement is driven from circumferential contractile fibres, without any other potential mechanisms. In this model, we utilised a circumferential contractile fibre representation based on investigations into the movement of contractile fibres as an individual system, treated circumferential fibres as a series of units, and matched our model simulation to experimental geometries. By testing against laser ablation datasets sourced from existing literature, we found that circumferential fibres can reproduce the majority of cross-sectional movements. We also investigated model predictions related to various aspects of cross-sectional movement, providing insights into epithelium mechanics and demonstrating the usefulness of our modelling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aegerter-Wilmsen T, Smith AC, Christen AJ, Aegerter CM, Hafen E, Basler K (2010) Exploring the effects of mechanical feedback on epithelial topology. Development 137(3):499–506

    Article  Google Scholar 

  • Aliee M, Rper JC, Landsberg KP, Pentzold C, Widmann TJ, Jlicher F, Dahmann C (2012) Physical mechanisms shaping the drosophila dorsoventral compartment boundary. Curr Biol 22(11):967–976

    Article  Google Scholar 

  • Bambardekar K, Clment R, Blanc O, Chards C, Lenne PF (2015) Direct laser manipulation reveals the mechanics of cell contacts in vivo. In: Proceedings of the National Academy of Sciences, p 201418732

  • Besser A, Schwarz US (2007) Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction. New J Phys 9(11):425–425

    Article  Google Scholar 

  • Bielmeier C, Alt S, Weichselberger V, La Fortezza M, Harz H, Jülicher F, Salbreux G, Classen AK (2016) Interface contractility between differently fated cells drives cell elimination and cyst formation. Curr Biol 26(5):563–574

    Article  Google Scholar 

  • Bonnet I, Marcq P, Bosveld F, Fetler L, Bellaiche Y, Graner F (2012) Mechanical state, material properties and continuous description of an epithelial tissue. J R Soc Interface 9(75):2614–23

    Article  Google Scholar 

  • Brodland G, Clausi D (1994) Embryonic tissue morphogenesis modeled by fem. J Biomech Eng 116(2):146–155

    Article  Google Scholar 

  • Brodland GW (2002) The differential interfacial tension hypothesis (dith): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J Biomech Eng 124(2):188–197

    Article  Google Scholar 

  • Brodland GW (2004) Computational modeling of cell sorting, tissue engulfment, and related phenomena: a review. Appl Mech Rev 57(1):47–76

    Article  Google Scholar 

  • Brodland GW, Veldhuis JH, Kim S, Perrone M, Mashburn D, Hutson MS (2014) Cellfit: a cellular force-inference toolkit using curvilinear cell boundaries. PloS ONE 9(6):e99,116

    Article  Google Scholar 

  • Burgess DR (1982) Reactivation of intestinal epithelial cell brush border motility: Atp-dependent contraction via a terminal web contractile ring. J Cell Biol 95(3):853–863

    Article  Google Scholar 

  • Butcher JC (1987) The numerical analysis of ordinary differential equations: Runge–Kutta and general linear methods. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  • Butler LC, Blanchard GB, Kabla AJ, Lawrence NJ, Welchman DP, Mahadevan L, Adams RJ, Sanson B (2009) Cell shape changes indicate a role for extrinsic tensile forces in drosophila germ-band extension. Nat Cell Biol 11(7):859–864

    Article  Google Scholar 

  • Chen HH, Brodland GW (2000) Cell-level finite element studies of viscous cells in planar aggregates. J Biomech Eng 122(4):394–401

    Article  Google Scholar 

  • Chen X, Brodland GW (2008) Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys Biol 5(1):015,003

    Article  Google Scholar 

  • Collinet C, Rauzi M, Lenne PF, Lecuit T (2015) Local and tissue-scale forces drive oriented junction growth during tissue extension. Nature cell biology Paper not direclty related to work I am doing currently, but very interesting

  • Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer EH (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122(10):1665–1679

    Article  Google Scholar 

  • Davidson LA (2012) No strings attached: new insights into epithelial morphogenesis. BMC Biol 10:105

    Article  Google Scholar 

  • Deguchi S, Ohashi T, Sato M (2005) Evaluation of tension in actin bundle of endothelial cells based on preexisting strain and tensile properties measurements. Mol Cell Biomech Online 2(3):125

    Google Scholar 

  • Deguchi S, Ohashi T, Sato M (2006) Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. J Biomech 39(14):2603–2610

    Article  Google Scholar 

  • Drenckhahn D, Dermietzel R (1988) Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol 107(3):1037–1048

    Article  Google Scholar 

  • Du X, Osterfield M, Shvartsman SY (2014) Computational analysis of three-dimensional epithelial morphogenesis using vertex models. Phys Biol 11(6):066,007

    Article  Google Scholar 

  • Ebrahim S, Fujita T, Millis BA, Kozin E, Ma X, Kawamoto S, Baird MA, Davidson M, Yonemura S, Hisa Y (2013) Nmii forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry. Curr Biol 23(8):731–736

    Article  Google Scholar 

  • Farhadifar R, Roper JC, Aigouy B, Eaton S, Julicher F (2007) The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol 17(24):2095–2104

    Article  Google Scholar 

  • Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106(11):2291–2304

    Article  Google Scholar 

  • Fristrom D, Fristrom JW (1975) The mechanism of evagination of imaginal discs of drosophila melanogaster: I. general considerations. Dev Biol 43(1):1–23

    Article  Google Scholar 

  • Geiger B, Dutton AH, Tokuyasu K, Singer S (1981) Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 91(3):614–628

    Article  Google Scholar 

  • Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47(3):2128

    Article  Google Scholar 

  • Gorfinkiel N, Blanchard GB (2011) Dynamics of actomyosin contractile activity during epithelial morphogenesis. Curr Opin Cell Biol 23(5):531–539

    Article  Google Scholar 

  • Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22(6):633–648

    Article  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69(13):2013

    Article  Google Scholar 

  • Graner F, Sawada Y (1993) Can surface adhesion drive cell rearrangement? part ii: a geometrical model. J Theor Biol 164(4):477–506

    Article  Google Scholar 

  • Hannezo E, Prost J, Joanny JF (2014) Theory of epithelial sheet morphology in three dimensions. Proc Nat Acad Sci 111(1):27–32

    Article  Google Scholar 

  • Hilgenfeldt S, Erisken S, Carthew RW (2008) Physical modeling of cell geometric order in an epithelial tissue. Proc Nat Acad Sci 105(3):907–911

    Article  Google Scholar 

  • Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195

    Article  Google Scholar 

  • Honda H, Tanemura M, Nagai T (2004) A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J Theor Biol 226(4):439–453

    Article  MathSciNet  Google Scholar 

  • Honda H, Motosugi N, Nagai T, Tanemura M, Hiiragi T (2008a) Computer simulation of emerging asymmetry in the mouse blastocyst. Development 135(8):1407–1414

    Article  Google Scholar 

  • Honda H, Nagai T, Tanemura M (2008b) Two different mechanisms of planar cell intercalation leading to tissue elongation. Dev Dyn 237(7):1826–1836

    Article  Google Scholar 

  • Hufnagel L, Teleman AA, Rouault H, Cohen SM, Shraiman BI (2007) On the mechanism of wing size determination in fly development. Proc Nat Acad Sci 104(10):3835–3840

    Article  Google Scholar 

  • Hutson MS, Veldhuis J, Ma X, Lynch HE, Cranston PG, Brodland GW (2009) Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics. Biophys J 97(12):3075–3085

    Article  Google Scholar 

  • Ishihara S, Sugimura K, Cox S, Bonnet I, Bellaiche Y, Graner F (2013) Comparative study of non-invasive force and stress inference methods in tissue. Eur Phys J E 36(4):1–13

    Article  Google Scholar 

  • Jayasinghe AK, Crews SM, Mashburn DN, Hutson MS (2013) Apical oscillations in amnioserosa cells: basolateral coupling and mechanical autonomy. Biophys J 105(1):255–265

    Article  Google Scholar 

  • Katoh K, Kano Y, Masuda M, Onishi H, Fujiwara K (1998) Isolation and contraction of the stress fiber. Mol Biol Cell 9(7):1919–1938

    Article  Google Scholar 

  • Kaunas R, Hsu H, Deguchi S (2011) Sarcomeric model of stretch-induced stress fiber reorganization. Cell Health Cytoskelet 3:13–22

    Google Scholar 

  • Keller Td, Conzelman KA, Chasan R, Mooseker MS (1985) Role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J Cell Biol 100(5):1647–1655

    Article  Google Scholar 

  • Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Nat Acad Sci 91(26):12,962–12,966

    Article  Google Scholar 

  • Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90(10):3762–3773

    Article  Google Scholar 

  • Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ, Bittig T, Said A, Julicher F, Dahmann C (2009) Increased cell bond tension governs cell sorting at the drosophila anteroposterior compartment boundary. Curr Biol 19(22):1950–1955

    Article  Google Scholar 

  • Langanger G, De Mey J, Moeremans M, Daneels G, De Brabander M, Small JV (1984) Ultrastructural localization of alpha-actinin and filamin in cultured cells with the immunogold staining (igs) method. J Cell Biol 99(4):1324–1334

    Article  Google Scholar 

  • Lecuit T, Lenne PF, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184

    Article  Google Scholar 

  • Li B, Sun SX (2014) Coherent motions in confluent cell monolayer sheets. Biophys J 107(7):1532–1541

    Article  Google Scholar 

  • Liu KC, Cheney RE (2012) Myosins in cell junctions. Bioarchitecture 2(5):158–170

    Article  Google Scholar 

  • Louveaux M, Julien JD, Mirabet V, Boudaoud A, Hamant O (2016) Cell division plane orientation based on tensile stress in arabidopsis thaliana. In: Proceedings of the National Academy of Sciences, p 201600677

  • Ma X, Lynch HE, Scully PC, Hutson MS (2009) Probing embryonic tissue mechanics with laser hole drilling. Phys Biol 6(3):036,004

    Article  Google Scholar 

  • Major RJ, Irvine KD (2005) Influence of notch on dorsoventral compartmentalization and actin organization in the drosophila wing. Development 132(17):3823–3833

    Article  Google Scholar 

  • Mao Y, Baum B (2015) Tug of war—the influence of opposing physical forces on epithelial cell morphology. Dev Biol 401(1):92–102

    Article  Google Scholar 

  • Mao Y, Tournier AL, Bates PA, Gale JE, Tapon N, Thompson BJ (2011) Planar polarization of the atypical myosin dachs orients cell divisions in drosophila. Genes Dev 25(2):131–136

    Article  Google Scholar 

  • Mao Y, Tournier AL, Hoppe A, Kester L, Thompson BJ, Tapon N (2013) Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J 32(21):2790–2803

    Article  Google Scholar 

  • Matsui TS, Deguchi S, Sakamoto N, Ohashi T, Sato M (2009) A versatile micro-mechanical tester for actin stress fibers isolated from cells. Biorheology 46(5):401–15

    Google Scholar 

  • Matsui TS, Sato M, Deguchi S (2013) High extensibility of stress fibers revealed by in vitro micromanipulation with fluorescence imaging. Biochem Biophys Res Commun 434(3):444–448

    Article  Google Scholar 

  • Meineke FA, Potten CS, Loeffler M (2001) Cell migration and organization in the intestinal crypt using a latticefree model. Cell Prolif 34(4):253–266

    Article  Google Scholar 

  • Mombach JCM, de Almeida RM, Iglesias JR (1993) Mitosis and growth in biological tissues. Phys Rev E 48(1):598

    Article  Google Scholar 

  • Mooseker MS (1985) Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol 1(1):209–241

    Article  Google Scholar 

  • Murisic N, Hakim V, Kevrekidis IG, Shvartsman SY, Audoly B (2015) From discrete to continuum models of three-dimensional deformations in epithelial sheets. Biophys J 109(1):154–163

    Article  Google Scholar 

  • Nagai T, Honda H (2001) A dynamic cell model for the formation of epithelial tissues. Philos Mag B 81(7):699–719

    Article  Google Scholar 

  • Noppe AR, Roberts AP, Gomez GA, Neufeld Z (2015) Modelling wound closure in an epithelial cell sheet using the cellular potts model. Integr Biol 7(10):1253–1264

    Article  Google Scholar 

  • Odell GM, Oster G, Alberch P, Burnside B (1981) The mechanical basis of morphogenesis: I. epithelial folding and invagination. Devel Biol 85(2):446–462

    Article  Google Scholar 

  • Okuda S, Inoue Y, Eiraku M, Sasai Y, Adachi T (2013) Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework. Biomech Model Mechanobiol 12(5):987–996

    Article  Google Scholar 

  • Osterfield M, Du X, Schupbach T, Wieschaus E, Shvartsman SY (2013) Three-dimensional epithelial morphogenesis in the developing drosophila egg. Dev Cell 24(4):400–10

    Article  Google Scholar 

  • Owaribe K, Kodama R, Eguchi G (1981) Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo. J Cell Biol 90(2):507–514

    Article  Google Scholar 

  • Rauzi M, Lenne PF (2011) Cortical forces in cell shape changes and tissue morphogenesis. Curr Top Dev Biol 95:93

    Article  Google Scholar 

  • Rauzi M, Verant P, Lecuit T, Lenne PF (2008) Nature and anisotropy of cortical forces orienting drosophila tissue morphogenesis. Nat Cell Biol 10(12):1401–10

    Article  Google Scholar 

  • Salbreux G, Barthel LK, Raymond PA, Lubensky DK (2012) Coupling mechanical deformations and planar cell polarity to create regular patterns in the zebrafish retina. PLoS Comput Biol 8(8):e1002,618

    Article  MathSciNet  Google Scholar 

  • Sandig M, Kalnins VI (1988) Subunits in zonulae adhaerentes and striations in the associated circumferential microfilament bundles in chicken retinal pigment epithelial cells in situ. Exp Cell Res 175(1):1–14

    Article  Google Scholar 

  • Sanger JW, Sanger JM, Jockusch BM (1983) Differences in the stress fibers between fibroblasts and epithelial cells. J Cell Biol 96(4):961–969

    Article  Google Scholar 

  • Schilling S, Willecke M, Aegerter-Wilmsen T, Cirpka OA, Basler K, von Mering C (2011) Cell-sorting at the a/p boundary in the drosophila wing primordium: a computational model to consolidate observed non-local effects of hh signaling. PLoS Comput Biol 7(4):e1002,025

    Article  Google Scholar 

  • Smith AM, Baker RE, Kay D, Maini PK (2012) Incorporating chemical signalling factors into cell-based models of growing epithelial tissues. J Math Biol 65(3):441–463

    Article  MathSciNet  MATH  Google Scholar 

  • Smutny M, Cox HL, Leerberg JM, Kovacs EM, Conti MA, Ferguson C, Hamilton NA, Parton RG, Adelstein RS, Yap AS (2010) Myosin ii isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12(7):696–702

    Article  Google Scholar 

  • Solon J, Kaya-opur A, Colombelli J, Brunner D (2009) Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137(7):1331–1342

    Article  Google Scholar 

  • Spahn P, Reuter R (2013) A vertex model of drosophila ventral furrow formation. PloS ONE 8(9):e75,051

    Article  Google Scholar 

  • Stachowiak MR, O’Shaughnessy B (2008) Kinetics of stress fibers. New J Phys 10(2):025,002

    Article  Google Scholar 

  • Stachowiak MR, O’Shaughnessy B (2009) Recoil after severing reveals stress fiber contraction mechanisms. Biophys J 97(2):462–471

    Article  Google Scholar 

  • Staple D, Farhadifar R, Rper JC, Aigouy B, Eaton S, Jlicher F (2010) Mechanics and remodelling of cell packings in epithelia. Eur Phys J E 33(2):117–127

    Article  Google Scholar 

  • Tetley RJ, Blanchard GB, Fletcher AG, Adams RJ, Sanson B (2016) Unipolar distributions of junctional myosin ii identify cell stripe boundaries that drive cell intercalation throughout drosophila axis extension. eLife 5:e12,094

    Article  Google Scholar 

  • Thoresen T, Lenz M, Gardel ML (2011) Reconstitution of contractile actomyosin bundles. Biophys J 100(11):2698–2705

    Article  Google Scholar 

  • Wang C, Tammi M, Guo H, Tammi R (1996) Hyaluronan distribution in the normal epithelium of esophagus, stomach, and colon and their cancers. Am J Pathol 148(6):1861

    Google Scholar 

  • Wang K, Ash JF, Singer S (1975) Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Nat Acad Sci 72(11):4483–4486

    Article  Google Scholar 

  • Wartlick O, Mumcu P, Kicheva A, Bittig T, Seum C, Jlicher F, Gonzalez-Gaitan M (2011) Dynamics of dpp signaling and proliferation control. Science 331(6021):1154–1159

    Article  Google Scholar 

  • Wehland J, Weber K (1980) Distribution of fluorescently labeled actin and tropomyosin after microinjection in living tissue culture cells as observed with tv image intensification. Exp Cell Res 127(2):397–408

    Article  Google Scholar 

  • Weliky M, Oster G (1990) The mechanical basis of cell rearrangement. Development 109(2):373–386

    Google Scholar 

  • Weliky M, Minsuk S, Keller R, Oster G (1991) Notochord morphogenesis in xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. Development 113(4):1231–1244

    Google Scholar 

  • Wu J, Dickinson RB, Lele TP (2012) Investigation of in vivo microtubule and stress fiber mechanics with laser ablation. Integr Biol 4(5):471–479

  • Wu SK, Gomez GA, Michael M, Verma S, Cox HL, Lefevre JG, Parton RG, Hamilton NA, Neufeld Z, Yap AS (2014) Cortical f-actin stabilization generates apical–lateral patterns of junctional contractility that integrate cells into epithelia. Nat Cell Biol 16(2):167–178

    Article  Google Scholar 

  • Yonemura S, Itoh M, Nagafuchi A, Tsukita S (1995) Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci 108(1):127–142

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Victorian Life Sciences Computation Initiative (VLSCI) Grant UOM0012 on its Peak Computing Facility at the University of Melbourne, an initiative of the Victorian Government. We would also like to acknowledge the statistical support of the Statistical Consulting Centre at the University of Melbourne, specifically Rachel Sore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. S. Lee.

Ethics declarations

Funding

This study was funded by the Australian Government Department of Education and Training Australian Postgraduate Award.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, A.R.B., Moore, S., Sader, J.E. et al. Modelling apical columnar epithelium mechanics from circumferential contractile fibres. Biomech Model Mechanobiol 16, 1555–1568 (2017). https://doi.org/10.1007/s10237-017-0905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0905-7

Keywords

Navigation