Skip to main content
Log in

Emerging role of exosomes in hematological malignancies

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Hematological malignancies are a heterogeneous group of neoplasms in the blood characterized by dysregulated hematopoiesis and classified as leukemia, lymphoma, and myeloma. The occurrence and progression of hematological malignancies depend on transformed hematopoietic stem cells, which refract to chemotherapy and often cause relapse. In recent years, monoclonal antibody therapies are preferred for hematopoietic cancers, owing to their inherent mechanisms of action and improved outcomes. However, efficient drug delivery methods and the establishment of novel biomarkers are currently being investigated and warranted to improve the outcome of patients with hematological malignancies. For instance, non-viral-mediated, natural carriers have been suggested for latent intracellular drug delivery. In this purview, repurposing small vesicles (e.g., exosomes) is considered a latent approach for myeloma therapy. Exosomes (nano-vesicles) have many advantages in that they are secreted by various animals and plants and become sought after for therapeutic and diagnostic purposes. The size of the cellular membrane of exosomes (30–150 nm) facilitates ligand binding and targeted delivery of the loaded molecules. Furthermore, exosomes can be modified to express specific target moiety on their cell membrane and can also be featured with desired biological activity, thereby potentially employed for various convoluted diseases, including hematological malignancies. To advance the current knowledge, this review is focused on the source, composition, function and surface engineering of exosomes pertaining to hematological malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rodriguez-Abreu D, Bordoni A, Zucca E. Epidemiology of hematological malignancies. Ann Oncol. 2007;18:i3-8.

    PubMed  Google Scholar 

  2. Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, et al. Bone marrow niches in haematological malignancies. Nat Rev Cancer. 2020;20:285–98.

    PubMed  PubMed Central  Google Scholar 

  3. Kumar B, Garcia M, Murakami JL, Chen CC. Exosome-mediated microenvironment dysregulation in leukemia. Biochim Biophys Acta Mol Cell Res. 2016;1863:464–70.

    CAS  Google Scholar 

  4. Litwińska Z, Łuczkowska K, Machaliński B. Extracellular vesicles in hematological malignancies. Leuk Lymphoma. 2019;60:29–36.

    PubMed  Google Scholar 

  5. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Peng Q, Zhang S, Yang Q, Zhang T, Wei X-Q, Jiang L, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials. 2013;34:8521–30.

    CAS  PubMed  Google Scholar 

  7. Yoshida K, Burton GF, McKinney JS, Young H, Ellis EF. Brain and tissue distribution of polyethylene glycol-conjugated superoxide dismutase in rats. Stroke. 1992;23:865–9.

    CAS  PubMed  Google Scholar 

  8. Veronese FM, Caliceti P, Schiavon O, Sergi M. Polyethylene glycol–superoxide dismutase, a conjugate in search of exploitation. Adv Drug Deliv Rev. 2002;54:587–606.

    CAS  PubMed  Google Scholar 

  9. Ishida T, Masuda K, Ichikawa T, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm. 2003;255(2):167–74.

    CAS  PubMed  Google Scholar 

  10. Ishida T, Kashima S, Kiwada H. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J Control Release. 2008;126:162–5.

    CAS  PubMed  Google Scholar 

  11. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, et al. Antibody against poly (ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007;110:103–11.

    PubMed  Google Scholar 

  12. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269–88.

    CAS  PubMed  Google Scholar 

  13. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220:727–37.

    CAS  PubMed  Google Scholar 

  14. Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J cancer. 2009;125:1595–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS ONE. 2010;5:e11469.

    PubMed  PubMed Central  Google Scholar 

  16. Bernardi S, Farina M. Exosomes and extracellular vesicles in myeloid Neoplasia: The multiple and complex roles played by these “magic bullets.” Biology. 2021;10(2):105.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Street JM, Koritzinsky EH, Glispie DM, Yuen PS. Urine exosome isolation and characterization. In: Drug Safety Evaluation. New York: Humana Press; 2017. p. 413–23.

    Google Scholar 

  18. Hu Y, Qi C, Liu X, Zhang C, Gao J, Wu Y, et al. Malignant ascites-derived exosomes promote peritoneal tumor cell dissemination and reveal a distinct miRNA signature in advanced gastric cancer. Cancer Lett. 2019;457:142–50.

    CAS  PubMed  Google Scholar 

  19. Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget. 2015;6:37043.

    PubMed  PubMed Central  Google Scholar 

  20. Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl [Internet]. 2015. 9:358–67. Available from: https://pubmed.ncbi.nlm.nih.gov/25684126

  21. Thind A, Wilson C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J Extracell vesicles. 2016;5:31292.

    PubMed  Google Scholar 

  22. Trino S, Lamorte D, Caivano A, De Luca L, Sgambato A, Laurenzana I. Clinical relevance of extracellular vesicles in hematological neoplasms: from liquid biopsy to cell biopsy. Leukemia. 2021;35(3):661–78.

    PubMed  Google Scholar 

  23. Chen Y-S, Lin E-Y, Chiou T-W, Harn H-J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci ji yi xue za zhiTzu-chi Med J [Internet]. 2019. 32:113–20. Available from: https://pubmed.ncbi.nlm.nih.gov/32269942

  24. Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta. 2019;488:165–71.

    CAS  PubMed  Google Scholar 

  25. Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020;5:1–14.

    CAS  Google Scholar 

  26. Ortega A, Martinez-Arroyo O, Forner MJ, Cortes R. Exosomes as drug delivery systems: endogenous nanovehicles for treatment of systemic lupus erythematosus. Pharmaceutics [Internet]. 2020.13:3. Available from: https://pubmed.ncbi.nlm.nih.gov/33374908

  27. Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41:245–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    CAS  PubMed  Google Scholar 

  29. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10:619–24.

    CAS  PubMed  Google Scholar 

  30. Segura E, Nicco C, Lombard B, Véron P, Raposo G, Batteux F, et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood. 2005;106:216–23.

    CAS  PubMed  Google Scholar 

  31. Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009;113:1977–81.

    PubMed  Google Scholar 

  32. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature. 2007;450:435–9.

    CAS  PubMed  Google Scholar 

  33. Burke J, Kolhe R, Hunter M, Isales C, Hamrick M, Fulzele S. Stem cell-derived exosomes: a potential alternative therapeutic agent in orthopaedics. Stem Cells Int. 2016;2016:1–6.

    Google Scholar 

  34. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20:847–56.

    CAS  PubMed  Google Scholar 

  35. Katsman D, Stackpole EJ, Domin DR, Farber DB. Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina. PLoS ONE. 2012;7:e50417.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reis LA, Carbonel AAF, Maganhin CC, de Simones JM, Schor N. Effects of exosomes (EXOs) derived by renal pluripotent stem cells (rPSCs) on the cisplatin (Cis) nephrotoxicity in mice. Microsc Microanal. 2014;20:1426–7.

    Google Scholar 

  37. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K, et al. 2013 Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Cell J 15.

  38. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262–70.

    CAS  PubMed  Google Scholar 

  39. Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: opportunities and challenges in cell-free therapy. Stem Cells Int. 2017;2017:1–10.

    Google Scholar 

  40. He C, Hua W, Liu J, Fan L, Wang H, Sun G. Exosomes derived from endoplasmic reticulum-stressed liver cancer cells enhance the expression of cytokines in macrophages via the STAT3 signaling pathway. Oncol Lett. 2020;20:589–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121:2437–45.

    PubMed  PubMed Central  Google Scholar 

  42. Wang C, Zhang C, Liu L, Xi A, Chen B, Li Y, et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 2017;25:192–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166:7309–18.

    PubMed  Google Scholar 

  44. Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, et al. Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J Cell Biol. 1999;147:599–610.

    PubMed  PubMed Central  Google Scholar 

  45. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13:17–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Anel A, Gallego-Lleyda A, de Miguel D, Naval J, Martínez-Lostao L. Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells. 2019;8:154.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Van der Vlist EJ, Arkesteijn GJ, van de Lest CH, Stoorvogel W, Nolte-’t Hoen EN, Wauben MH. CD4+ T cell activation promotes the differential release of distinct populations of nanosized vesicles. J Extracell Vesicles. 2012;1(1):18364.

    Google Scholar 

  48. Mazzeo C, Calvo V, Alonso R, Mérida I, Izquierdo M. Protein kinase D1/2 is involved in the maturation of multivesicular bodies and secretion of exosomes in T and B lymphocytes. Cell Death Differ. 2016;23:99–109.

    CAS  PubMed  Google Scholar 

  49. Torralba D, Baixauli F, Villarroya-Beltri C, Fernández-Delgado I, Latorre-Pellicer A, Acín-Pérez R, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 2018;9:1–17.

    CAS  Google Scholar 

  50. Tucher C, Bode K, Schiller P, Claßen L, Birr C, Souto-Carneiro MM, et al. Extracellular vesicle subtypes released from activated or apoptotic T-lymphocytes carry a specific and stimulus-dependent protein cargo. Front Immunol. 2018;9:534.

    PubMed  PubMed Central  Google Scholar 

  51. Siemasko K, Eisfelder BJ, Williamson E, Kabak S, Clark MR. Cutting edge: signals from the B lymphocyte antigen receptor regulate MHC class II containing late endosomes. J Immunol. 1998;160:5203–8.

    CAS  PubMed  Google Scholar 

  52. Kato T, Fahrmann JF, Hanash SM, Vykoukal J. Extracellular vesicles mediate B cell immune response and are a potential target for cancer therapy. Cells. 2020;9(6):1518.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood. 2005;105:1734–41.

    CAS  PubMed  Google Scholar 

  54. Hong BS, Cho J-H, Kim H, Choi E-J, Rho S, Kim J, et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics. 2009;10:1–13.

    Google Scholar 

  55. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013;32:2747–55.

    CAS  PubMed  Google Scholar 

  56. Abd Elmageed ZY, Yang Y, Thomas R, Ranjan M, Mondal D, Moroz K, et al. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells. 2014;32:983–97.

    CAS  PubMed  Google Scholar 

  57. Li S, Lin Z, Jiang X, Yu X. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol Sin. 2018;39:542–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell vesicles. 2018;7:1422676.

    PubMed  PubMed Central  Google Scholar 

  59. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kooijmans SAA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJA, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. 2013;172:229–38.

    CAS  PubMed  Google Scholar 

  61. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sato YT, Umezaki K, Sawada S, Mukai S, Sasaki Y, Harada N, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:1–11.

    Google Scholar 

  63. Richardson JJ, Ejima H. Surface engineering of extracellular vesicles through chemical and biological strategies. Chem Mater. 2019;31:2191–201.

    CAS  Google Scholar 

  64. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yim N, Ryu S-W, Choi K, Lee KR, Lee S, Choi H, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat Commun [Internet]. 2016. 7:12277. Available from: https://doi.org/10.1038/ncomms12277

  66. Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun. 2016;472:53–9.

    CAS  PubMed  Google Scholar 

  67. Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, et al. Surface functionalization of exosomes using click chemistry. Bioconjug Chem. 2014;25:1777–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang M, Altinoglu S, Takeda YS, Xu Q. Integrating protein engineering and bioorthogonal click conjugation for extracellular vesicle modulation and intracellular delivery. PLoS ONE. 2015;10:e0141860.

    PubMed  PubMed Central  Google Scholar 

  69. Kooijmans SAA, Fliervoet LAL, Van Der Meel R, Fens M, Heijnen HFG, van Bergen en Henegouwen PMP, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release. 2016;224:77–85.

    CAS  PubMed  Google Scholar 

  70. Kumar S, Michael IJ, Park J, Granick S, Cho Y. Cloaked exosomes: biocompatible, durable, and degradable encapsulation. Small. 2018;14:1802052.

    Google Scholar 

  71. Delcayre A, Estelles A, Sperinde J, Roulon T, Paz P, Aguilar B, et al. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells, Mol Dis. 2005;35:158–68.

    CAS  PubMed  Google Scholar 

  72. Peterson MF, Otoc N, Sethi JK, Gupta A, Antes TJ. Integrated systems for exosome investigation. Methods. 2015;87:31–45.

    CAS  PubMed  Google Scholar 

  73. Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 2015;5:1–13.

    Google Scholar 

  74. Armstrong JPK, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano. 2017;11:69–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Qi H, Liu C, Long L, Ren Y, Zhang S, Chang X, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano. 2016;10:3323–33.

    CAS  PubMed  Google Scholar 

  76. Tamura R, Uemoto S, Tabata Y. Augmented liver targeting of exosomes by surface modification with cationized pullulan. Acta Biomater. 2017;57:274–84.

    CAS  PubMed  Google Scholar 

  77. Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.

    CAS  PubMed  Google Scholar 

  78. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–93.

    PubMed  Google Scholar 

  79. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    CAS  PubMed  Google Scholar 

  80. Kalidas M, Kantarjian H, Talpaz M. Chronic myelogenous leukemia. JAMA. 2001;286:895–8.

    CAS  PubMed  Google Scholar 

  81. Lahaye T, Riehm B, Berger U, Paschka P, Müller MC, Kreil S, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer. 2005;103(8):1659–69.

    PubMed  Google Scholar 

  82. Hrdinova T, Toman O, Dresler J, Klimentova J, Salovska B, Pajer P, et al. Exosomes released by imatinib-resistant K562 cells contain specific membrane markers, IFITM3, CD146 and CD36 and increase the survival of imatinib-sensitive cells in the presence of imatinib. Int J Oncol. 2021;58(2):238–50.

    CAS  PubMed  Google Scholar 

  83. Giles FJ, Abruzzese E, Rosti G, Kim DW, Bhatia R, Bosly A, et al. Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia. 2010;24(7):1299–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jabbour E, Kantarjian HM, Saglio G, Steegmann JL, Shah NP, Boqué C, et al. Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2014;123(4):494–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen R, Chen B. The role of dasatinib in the management of chronic myeloid leukemia. Drug Des Dev Ther. 2015;9:773.

    CAS  Google Scholar 

  86. Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, et al. Interleukin 3-receptor targeted exosomes inhibit in vitro and in vivo Chronic myelogenous leukemia cell growth. Theranostics. 2017;7:1333.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang L, Gu N, Zhang X, Wang D. Light-inducible exosome-based vehicle for endogenous rna loading and delivery to leukemia cells. Adv Funct Mater. 2019;29:1807189.

    Google Scholar 

  88. Bennit HRF, Gonda A, Oppegard LJ, Chi DP, Khan S, Wall NR. Uptake of lymphoma-derived exosomes by peripheral blood leukocytes. Blood Lymphat Cancer Targets Ther. 2017;7:9.

    CAS  Google Scholar 

  89. Densmore JJ, Williams ME. Mantle cell lymphoma. Curr Treat Options Oncol [Internet]. 2000.1:281–5. Available from: https://doi.org/10.1007/s11864-000-0041-x

  90. Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. Am Soc Clin Investig. 2012;122:3416–23.

    CAS  Google Scholar 

  91. Hazan-Halevy I, Rosenblum D, Weinstein S, Bairey O, Raanani P, Peer D. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Lett. 2015;364:59–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Feng D, Zhao W, Ye Y, Bai X, Liu R, Chang L, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11:675–87.

    CAS  PubMed  Google Scholar 

  93. Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood J Am Soc Hematol. 2014;123:208–16.

    CAS  Google Scholar 

  94. Bao H, Bi C, Li W, Zhang X, Zhang H, Meng B, et al. Chimeric antigen receptor-engineered exosome as a drug delivery system in mantle cell lymphoma. Blood. 2017;130:5561.

    Google Scholar 

  95. Haque S, Vaiselbuh SR. CD19 Chimeric antigen receptor-exosome targets CD19 positive B-lineage acute lymphocytic leukemia and induces cytotoxicity. Cancers. 2021;13:1401.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Veerman RE, Akpinar GG, Eldh M, Gabrielsson S. Immune cell-derived extracellular vesicles-functions and therapeutic applications. Trends Mol Med. 2019;25:382–94.

    CAS  PubMed  Google Scholar 

  97. Pitt JM, André F, Amigorena S, Soria J-C, Eggermont A, Kroemer G, et al. Dendritic cell–derived exosomes for cancer therapy. J Clin Invest. 2016;126:1224–32.

    PubMed  PubMed Central  Google Scholar 

  98. Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 2017;67:739–48.

    CAS  PubMed  Google Scholar 

  99. Joshua DE, Bryant C, Dix C, Gibson J, Ho J. Biology and therapy of multiple myeloma. Med J Aust [Internet].2019. 210:375–80. Available from: https://doi.org/10.5694/mja2.50129

  100. Rajkumar SV. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:719–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346:564–9.

    PubMed  Google Scholar 

  102. Cheng Q, Li X, Wang Y, Dong M, Zhan F, Liu J. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol Sin. 2018;39:561–8.

    CAS  PubMed  Google Scholar 

  103. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, J Am Soc Hematol. 2014;124:3748–57.

    CAS  Google Scholar 

  104. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6:13772.

    PubMed  PubMed Central  Google Scholar 

  105. Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem. 2016;291:1652–63.

    CAS  PubMed  Google Scholar 

  106. Li B, Xu H, Han H, Song S, Zhang X, Ouyang L, et al. Exosome-mediated transfer of lncRUNX2-AS1 from multiple myeloma cells to MSCs contributes to osteogenesis. Oncogene. 2018;37:5508–19.

    CAS  PubMed  Google Scholar 

  107. Borrelli C, Ricci B, Vulpis E, Fionda C, Ricciardi MR, Petrucci MT, et al. Drug-induced senescent multiple myeloma cells elicit NK cell proliferation by direct or exosome-mediated IL15 trans-presentation. Cancer Immunol Res. 2018;6:860–9.

    CAS  PubMed  Google Scholar 

  108. Giri JG, Ahdieh M, Eisenman J, Shanebeck K, Grabstein K, Kumaki S, et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 1994;13:2822–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Burkett PR, Koka R, Chien M, Chai S, Boone DL, Ma A. Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med. 2004;200:825–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kobayashi H, Dubois S, Sato N, Sabzevari H, Sakai Y, Waldmann TA, et al. Role of trans-cellular IL-15 presentation in the activation of NK cell–mediated killing, which leads to enhanced tumor immunosurveillance. Blood. 2005;105:721–7.

    CAS  PubMed  Google Scholar 

  111. Soriani A, Iannitto ML, Ricci B, Fionda C, Malgarini G, Morrone S, et al. Reactive oxygen species–and DNA damage response–dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1. J Immunol Am Assoc Immnol. 2014;193:950–60.

    CAS  Google Scholar 

  112. Raje N, Roodman GD. Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res. 2011;17:1278–86.

    CAS  PubMed  Google Scholar 

  113. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27:370–81.

    CAS  PubMed  Google Scholar 

  114. Liu Z, Liu H, Li Y, Shao Q, Chen J, Song J, et al. Multiple myeloma-derived exosomes inhibit osteoblastic differentiation and improve IL-6 secretion of BMSCs from multiple myeloma. J Investig Med. 2020;68:45–51.

    PubMed  Google Scholar 

  115. Shaimardanova AA, Solovyeva VV, Chulpanova DS, James V, Kitaeva KV, Rizvanov AA. Extracellular vesicles in the diagnosis and treatment of central nervous system diseases. Neural Regen Res. 2020;15:586.

    CAS  PubMed  Google Scholar 

  116. Srivastava A, Moxley K, Ruskin R, Dhanasekaran DN, Zhao YD, Ramesh R. A non-invasive liquid biopsy screening of urine-derived exosomes for miRNAs as biomarkers in endometrial cancer patients. AAPS J. 2018;20:1–11.

    Google Scholar 

  117. Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomed Nanotechnol, Biol Med. 2017;13:1627–36.

    CAS  Google Scholar 

  118. Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Parizadeh SMR, Hassanian SM, Rezayi M, et al. Circulating exosomes as potential biomarkers in cardiovascular disease. Curr Pharm Des. 2018;24:4436–44.

    CAS  PubMed  Google Scholar 

  119. Hornung S, Dutta S, Bitan G. CNS-derived blood exosomes as a promising source of biomarkers: opportunities and challenges. Front Mol Neurosci. 2020;13:38.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. LeBleu VS, Kalluri R. Exosomes as a multicomponent biomarker platform in cancer. Trends Cancer. 2020;6(9):776–774.

    Google Scholar 

  121. Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9.

    CAS  PubMed  Google Scholar 

  122. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Jiang L, Deng T, Wang D, Xiao Y. Elevated serum exosomal miR-125b level as a potential marker for poor prognosis in intermediate-risk acute myeloid leukemia. Acta Haematol [Internet]. 2018. 140:183–92. Available from: https://www.karger.comhttps://doi.org/10.1159/000491584

  124. Rzepiel A, Egyed B, Gézsi A, Sági JC, Semsei ÁF, Szalai C, et al. ALL-074: exosomal micrornas as minimal residual disease biomarker candidates in childhood acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk [Internet]. 2020. 20:S162. Available from: https://www.sciencedirect.com/science/article/pii/S2152265020306790

  125. Haque S, Vaiselbuh SR. Silencing of Exosomal miR-181a reverses pediatric acute lymphocytic leukemia cell proliferation. Pharm. 2020;13(9):241.

    CAS  Google Scholar 

  126. Gatter K, Pezzella F. Diffuse large B-cell lymphoma. Diagnostic Histopathol. 2010;16:69–81.

    Google Scholar 

  127. Fan S, Chen W-X, Lv X-B, Tang Q-L, Sun L-J, Liu B-D, et al. miR-483-5p determines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1. Cancer Lett. 2015;362:183–91.

    CAS  PubMed  Google Scholar 

  128. Feng Y, Zhong M, Zeng S, Wang L, Liu P, Xiao X, et al. Exosome-derived miRNAs as predictive biomarkers for diffuse large B-cell lymphoma chemotherapy resistance. Epigenomics [Internet]. Future Medicine. 2018. 11:35–51. Available from: https://doi.org/10.2217/epi-2018-0123

  129. Ofori K, Bhagat G, Rai AJ. Exosomes and extracellular vesicles as liquid biopsy biomarkers in diffuse large B-cell lymphoma: Current state of the art and unmet clinical needs. Br J Clin Pharmacol [Internet]. 2021. 87:284–94. Available from: https://doi.org/10.1111/bcp.14611

  130. Kontopoulou E, Strachan S, Reinhardt K, Kunz F, Walter C, Walkenfort B, et al. Evaluation of dsDNA from extracellular vesicles (EVs) in pediatric AML diagnostics. Ann Hematol. 2020;99(3):459–75.

    CAS  PubMed  Google Scholar 

  131. Bernardi S, Zanaglio C, Farina M, Polverelli N, Malagola M, Russo D. dsDNA from extracellular vesicles (EVs) in adult AML. Ann Hematol. 2021;100(5):1355–6.

    PubMed  Google Scholar 

  132. Gao X, Wan Z, Wei M, Dong Y, Zhao Y, Chen X, et al. Chronic myelogenous leukemia cells remodel the bone marrow niche via exosome-mediated transfer of miR-320. Theranostics. 2019;9(19):5642–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bernardi S, Foroni C, Zanaglio C, Re F, Polverelli N, Turra A, et al. Feasibility of tumor-derived exosome enrichment in the onco-hematology leukemic model of chronic myeloid leukemia. Int J Mol Med. 2019;44(6):2133–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Repetto O, Lovisa F, Elia C, Enderle D, Romanato F, Buffardi S, et al. Proteomic exploration of plasma exosomes and other small extracellular vesicles in pediatric Hodgkin lymphoma: a potential source of biomarkers for relapse occurrence. Diagnostics. 2021;11(6):917.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Jaffe ES. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. France: Iarc; 2001.

    Google Scholar 

  136. Provencio M, Rodríguez M, Cantos B, Sabín P, Quero C, García-Arroyo FR, et al. mRNA in exosomas as a liquid biopsy in non-Hodgkin Lymphoma: a multicentric study by the Spanish Lymphoma Oncology Group. Oncotarget [Internet]. 2017. 8:50949–57. Available from: https://pubmed.ncbi.nlm.nih.gov/28881619

  137. Zhang L, Pan L, Xiang B, Zhu H, Wu Y, Chen M, et al. Potential role of exosome-associated microRNA panels and in vivo environment to predict drug resistance for patients with multiple myeloma. Oncotarget [Internet]. 2016.7:30876–91. Available from: https://pubmed.ncbi.nlm.nih.gov/27129167

  138. Iaccino E, Mimmi S, Dattilo V, Marino F, Candeloro P, Di Loria A, et al. Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes. Mol Cancer [Internet]. 2017. 16:159. Available from: https://doi.org/10.1186/s12943-017-0730-8

  139. Zhang Z, Li Y, Geng C, Zhou H, Gao W, Chen W. Serum exosomal microRNAs as novel biomarkers for multiple myeloma. Hematol Oncol [Internet]. 2019.37:409–17. Available from: https://doi.org/10.1002/hon.2639

  140. Russo M, Tirinato L, Scionti F, Coluccio ML, Perozziello G, Riillo C, et al. Raman spectroscopic stratification of multiple myeloma patients based on exosome profiling. ACS Omega [Internet]. 2020. 5:30436–43. Available from: https://doi.org/10.1021/acsomega.0c03813

  141. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123(4):1542–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, et al. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014;124(4):555–66.

    CAS  PubMed  Google Scholar 

  143. Xu H, Han H, Song S, Yi N, Qian C, Qiu Y, et al. Exosome-transmitted PSMA3 and PSMA3-AS1 promote proteasome inhibitor resistance in multiple myeloma. Clin Cancer Res. 2019;25(6):1923–35.

    CAS  PubMed  Google Scholar 

  144. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90.

    CAS  PubMed  Google Scholar 

  145. Saunderson SC, McLellan AD. Role of lymphocyte subsets in the immune response to primary B cell-derived exosomes. J Immunol Am Assoc Immnol. 2017;199:2225–35.

    CAS  Google Scholar 

  146. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med. 1998;4(5):594–600.

    CAS  PubMed  Google Scholar 

  147. Murn J, Alibert O, Ning W, Tendil S, Gidrol X. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4. J Exp Med. 2008;205(13):3091–103.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Devaraj Sankarganesh, Scientist-D and Head, Center for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai-600119, Tamilnadu, India, for critically evaluating the manuscript and providing suggestions.

Funding

The authors of this manuscript did not receive funding from any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KK Vijayakumar, S Kunjiappan, E Babkiewicz, P Maszczyk. The first draft of the manuscript was written by SRK Pandian and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sureshbabu Ram Kumar Pandian.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandian, S.R.K., Vijayakumar, K.K., Kunjiappan, S. et al. Emerging role of exosomes in hematological malignancies. Clin Exp Med 23, 1123–1136 (2023). https://doi.org/10.1007/s10238-022-00850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00850-z

Keywords

Navigation