Skip to main content
Log in

On the Integrability of the Abel and of the Extended Liénard Equations

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

We present some exact integrability cases of the extended Liénard equation y″ + f(y)(y′)n + k(y)(y′)m + g(y)y′ + h(y) = 0, with n > 0 and m > 0 arbitrary constants, while f(y), k(y), g(y), and h(y) are arbitrary functions. The solutions are obtained by transforming the equation Liénard equation to an equivalent first kind first order Abel type equation given by \(\frac{d v}{d y}=f(y) v^{3-n}+k(y) v^{3-m}+g(y) v^{2}+h(y) v^{3}\), with υ = 1/y′. As a first step in our study we obtain three integrability cases of the extended quadratic-cubic Liénard equation, corresponding to n = 2 and m = 3, by assuming that particular solutions of the associated Abel equation are known. Under this assumption the general solutions of the Abel and Liénard equations with coefficients satisfying some differential conditions can be obtained in an exact closed form. With the use of the Chiellini integrability condition, we show that if a particular solution of the Abel equation is known, the general solution of the extended quadratic cubic Liénard equation can be obtained by quadratures. The Chiellini integrability condition is extended to generalized Abel equations with g(y) ≡ 0 and h(y) ≡ 0, and arbitrary n and m, thus allowing to obtain the general solution of the corresponding Liénard equation. The application of the generalized Chiellini condition to the case of the reduced Riccati equation is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, A.A., Leontovich, E.A., Gordon, Maier, A.G. Qualitative Theory of Second Order Dynamic Systems. Wiley, New York, 1973

    MATH  Google Scholar 

  2. Banerjee, D., Bhattacharjee, J. K. Renormalization group and Liénard systems of differential equations. Journal of Physics A: Mathematical and Theoretical, 43, 062001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouqet, S.E., Conte, R., Kelsch, V., Louvet, F. Solutions of the buoyancy-drag equation with a time-dependent acceleration. Journal of Nonlinear Mathematical Physics, 24 Supplement 1: 317 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Chandrasekar, V.K., Senthilvelan, M.A., Kundu, A., Lakshmanan, M. A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators. Journal of Physics A: Mathematical and Theoretical, 39: 9743–9754 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheb-Terrab, E.S., Roche, A. D. Abel ODEs: equivalence and integrable classes. Computer Physics Communications, 130: 204231 (2000)

    Article  MATH  Google Scholar 

  6. Chiellini, A. Sull’integrazione dell’equazione differenziale y′ + Py 2 + Qy 3 = 0. Bollettino della Unione Matematica Italiana, 10: 301–307 (1931)

    MATH  Google Scholar 

  7. DiBenedetto, E. Classical mechanics: theory and mathematical modeling. New York, Birkhäuser, Springer, 2011

    Book  MATH  Google Scholar 

  8. Euler, N. Transformation properties of \(\frac{d^{2} x}{d t^{2}}+f_{1}(t) \frac{d x}{d t}+f_{2}(t) x+f_{3}(t) x^{n}=0\). Journal of Nonlinear Mathematical Physics, 4: 310–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghose-Choudhury, A., Guha, P. An analytic technique for the solutions of nonlinear oscillators with damping using the Abel Equation, to be published in Discontinuity, Nonlinearity, and Complexity, arXiv:1608.02324 [nlin.SI] (2016)

  10. Ghose-Choudhury, A., Guha, P. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems, 22: 2465–2478 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harko, T., Mak, M.K. Relativistic dissipative cosmological models and Abel differential equation. Computers & Mathematics with Applications, 46: 849–853 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harko, T., Lobo, F.S.N., Mak, M.K. Integrability cases for the anharmonic oscillator equation. Journal of Pure and Applied Mathematics: Advances and Applications, 10: 115–129 (2013)

    Google Scholar 

  13. Harko, T., Lobo, F.S.N., Mak, M.K. A Chiellini type integrability condition for the generalized first kind Abel differential equation. Universal Journal of Applied Mathematics, 1: 101–104 (2013)

    Google Scholar 

  14. Harko, T., Lobo, F.S.N., Mak, M.K. A class of exact solutions of the Liénard type ordinary non-linear differential equation. Journal of Engineering Mathematics, 89: 193–205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harko, T., Lobo, F.S.N., Mak, M.K. Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions. Universal Journal of Applied Mathematics, 2: 109–118 (2014)

    Google Scholar 

  16. Harko, T., Mak, M.K. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 12: 41–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harko, T., Mak, M.K. Exact travelling wave solutions of non-linear reaction-convection-diffusion equations- an Abel equation based approach. Journal of Mathematical Physics, 56: 111501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harko, T., Liang, S.D. Exact solutions of the Liénard and generalized Liénard type ordinary non-linear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator. Journal of Engineering Mathematics, 98: 93–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kamke, E. Differentialgleichungen: Lösungsmethoden und Lösungen. Chelsea, New York, 1959

    MATH  Google Scholar 

  20. Kudryashov, N.A., Sinelshchikov, D.I. On the criteria for integrability of the Liénard equation. Applied Mathematics Letters, 57: 114–120 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kudryashov, N.A., Sinelshchikov, D.I. On the integrability conditions for a family of the Liénard-type equations. Regular and Chaotic Dynamics, 21: 548–555 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kudryashov, N.A., Sinelshchikov, D.I. New non-standard Lagrangians for the Liénard-type equations. Applied Mathematics Letters, 63: 124–129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levinson, A., Smith, O. A general equation for relaxation oscillations. Duke Mathematical Journal, 9: 382–403 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liénard, A. Etude des oscillations entretenues. Revue générale de l’électricité, 23: 901–912 (1928)

    Google Scholar 

  25. Liénard, A. Etude des oscillations entretenues. Revue générale de l’électricité, 23: 946–954 (1928)

    Google Scholar 

  26. Liouville, R. Sur une equation différentielle du premier ordre. Acta Mathematica, 26: 5578 (1902)

    Google Scholar 

  27. Liu, X.G., Tang, M.L., Martin, R.R. Periodic solutions for a kind of Liénard equation. Journal of Computational and Applied Mathematics, 219: 263–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mak, M.K., Chan, H.W., Harko, T. Solutions generating technique for Abel-type nonlinear ordinary differential equations. Computers & Mathematics with Applications, 41: 1395–1401 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mak, M.K., Harko, T. New method for generating general solution of Abel differential equation. Computers & Mathematics with Applications, 43: 91–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mak, M.K., Harko, T. New integrability case for the Riccati equation. Applied Mathematics and Computation, 218: 10974–10981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mak, M.K., Harko, T. New further integrability cases for the Riccati equation. Applied Mathematics and Computation, 219: 7465–7471 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mancas, S.C., Rosu, H.C. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations. Phys. Lett. A, 377: 1234–1238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mancas, S.C., Rosu, H.C. Integrable Abel equations and Vein’s Abel equation. Math. Meth. Appl. Sci., 39: 1376–1387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Messias, M., Alves, G., Márcio, R. Time-periodic perturbation of a Liénard equation with an unbounded homoclinic loop. Physica D: Nonlinear Phenomena, 240: 1402–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mickens, R.E. Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods, World Scientific. New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, 2010

  36. Mukherjee, S., Ghose-Choudhury, A., Guha, P. Generalized damped Milne-Pinney equation and Chiellini method. arXiv:1603.08747 [nlin.SI] (2016)

  37. Murphy, G.M. Ordinary Differential Equations and their Solutions. Van Nostrand, Princeton, 1960

    MATH  Google Scholar 

  38. Nayfeh, A.H., Mook, D.T. Nonlinear Oscillations. John Wiley & Sons, New York, Chichester, 1995

    Book  MATH  Google Scholar 

  39. Pandey, S.N., Bindu, P.S., Senthilvelan, M., Lakshmanan, M. A group theoretical identification of integrable cases of the Liénard-type equation x″ + f (x)x′ + g(x) = 0. I. Equations having nonmaximal number of Lie point symmetries. Journal of Mathematical Physics, 50: 082702–082702–19 (2009)

    MATH  Google Scholar 

  40. Pandey, S.N., Bindu, P.S., Senthilvelan, M., Lakshmanan, M. A group theoretical identification of integrable equations in the Liénard-type equation x″ + f (x)x′ + g(x) = 0. II. Equations having maximal Lie point symmetries. Journal of Mathematical Physics, 50: 102701–102701–25 (2009)

    MATH  Google Scholar 

  41. Polyanin, A.D., Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations. Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D.C., 2003

    MATH  Google Scholar 

  42. Rosu, H.C., Cornejo-Perez, O., Chen, P. Nonsingular parametric oscillators Darboux-related to the classical harmonic oscillator. Europhys. Lett., 100: 60006 (2012)

    Article  Google Scholar 

  43. Rosu, H.C., Mancas, S.C., Chen, P. Barotropic FRW cosmologies with Chiellini damping in comoving time. Mod. Phys. Lett. A, 30: 1550100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Scalizzi, P. Soluzione di alcune equazioni del tipo di Abel. Atti Accad. Naz. Lincei, Seria, 5: 60–64 (1917)

    MATH  Google Scholar 

  45. Zou, L., Chen, X., Zhang, W. Local bifurcations of critical periods for cubic Liénard equations with cubic damping. Journal of Computational and Applied Mathematics, 222: 404–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for comments and suggestions that helped us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Kwong Mak or Tiberiu Harko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, M.K., Harko, T. On the Integrability of the Abel and of the Extended Liénard Equations. Acta Math. Appl. Sin. Engl. Ser. 35, 722–736 (2019). https://doi.org/10.1007/s10255-019-0847-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-019-0847-1

Keywords

2000 MR Subject Classification

Navigation