Skip to main content
Log in

Molecular phylogeny of Anaphalis (Asteraceae, Gnaphalieae) with biogeographic implications in the Northern Hemisphere

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Anaphalis is the largest Asian genus in the tribe Gnaphalieae (Asteraceae) and has its greatest species diversity in the eastern Himalayas. The nuclear internal and external transcribed spacers were sequenced for Anaphalis species, with an emphasis on the eastern Himalayan taxa to examine the monophyly and construct the phylogenetic relationships of and within the genus. The results suggest that all species of Anaphalis are nested with Helichrysum, showing a close relationship with a Mediterranean–Asian group of Helichrysum. Although the monophyly of Anaphalis is only weakly supported, two clades within the genus are well recognized, each consisting of two subgroups. The inferred phylogenetic relationships within Anaphalis correspond to the shape of leaf base, rather than the morphology of the capitula and phyllaries that are usually used for species delimitation and classification in the genus. All four subgroups of Anaphalis are common and diversified in the eastern Himalayas with multiple dispersals out of this region. The sole North American species of Anaphalis is best hypothesized to be the result of long-distance dispersal or overland migration via Bering land bridge from Asia. Our analyses suggest that the extant distribution of Anaphalis has most likely resulted one radiation into the eastern Himalayas followed by repeated independent dispersals and/or radiations mostly into eastern Asia but also into the western Himalayas, North America, and southeast Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Anderberg AA (1991) Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot 104:1–195

    Google Scholar 

  • Axelrod DI, Al-Shehbaz I, Raven RH (1998) History of the modern flora of China. In: Zhang A-L, Wu S-G (eds) Floristic characteristics and diversity of East Asian plants—Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants. China Higher Educ. Press, Beijing, pp 43–55

    Google Scholar 

  • Backer CA, Bakhuizen RC (1963) Flora of Java, vol II. P. Noordhoff, Groningen

    Google Scholar 

  • Baird KE, Funk VA, Wen J, Weeks A (2010) Molecular phylogenetic analysis of Leibnitzia Cass. (Asteraceae: Mutisieae: gerbera-complex), an Asian–North American disjunct genus. J Syst Evol 48:161–174

    Article  Google Scholar 

  • Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylogenet Evol 10:449–463

    Article  PubMed  CAS  Google Scholar 

  • Bayer RJ, Greber DG, Bagnall NH (2002) Phylogeny of Australian Gnaphalieae (Asteraceae) based on cloroplast and nuclear sequences, the trnL intron, trnL/trnF Intergenic spacer, matK, and ETS. Syst Bot 27:801–814

    Google Scholar 

  • Bayer MB, Breitweiser I, Ward J, Puttock CF (2007) Tribe Gnaphalieae. In: Kadereit JW, Jeffrey C (eds) The families and genera of flowering plants, flowering plants, Eudicots, Asterales, vol VIII. Springer, Berlin, pp 246–283

    Google Scholar 

  • Beauverd G (1913) La constante générique des Anaphalis DC. Bull Soc Bot Genève sér 2:146–147

    Google Scholar 

  • Bentham G, Hooker JD (1873) Genera Plantarum, vol 2. Lovell Reeve and Co., London

    Google Scholar 

  • Bergh NG, Linder HP (2009) Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Mol Phylogenet Evol 51:5–18

    Article  PubMed  Google Scholar 

  • Blöch C, Dickoré WB, Samuel R, Stuessy TF (2010) Molecular phylogeny of the edelweiss (Leontopodium, Asteraceae–Gnaphalieae). Edinburgh J Bot 67:235–264

    Article  Google Scholar 

  • Borissova (1999) Anaphalis. In: Shishkin BK (ed) Flora of the USSR, vol 25. Bishen Singh Mahendra Pal Singh and Koeltz Scientific Books, Washington

  • Boufford DE, Van Dyck PP (1999) South-Central China. In: Mittermeier RA, Myers N, Mittermeier CG (eds) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, pp 338–351

  • Chen F-H, Ling Y, Chen Y-L, Shi C, Wang W (1966) De genere Anaphalis DC. familiae Compositarum e Florae Sinicae. Acta Phytotax Sin 11:91–12

    Google Scholar 

  • Chen YS, Zhu SX, Bayer RA (2011) Gnaphalieae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 20–21 (Asteraceae). Science Press (Beijing) and Missouri Botanical Garden Press, St. Louis, pp 774–818

  • De Candolle A (1837) Prodromus systematis naturalis regni vegetabilis, vol VI. Treuttel and Wurtz, Paris

  • Dewey JF, Shackleton RM, Chang C, Sun Y (1988) The tectonic evolution of Tibetan Plateau. Phil Trans R Soc Lond, Ser A 327:379–413

    Article  Google Scholar 

  • Drury DG (1970) A fresh approach to the classification of the genus Gnaphalium with particular reference to the species present in New Zealand (Inuleae–Compositae). New Zeal J Bot 9:222–248

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Ford KA, Ward JM, Smissen RD, Wagstaff SJ, Breitwieser I (2007) Phylogeny and biogeography of Craspedia (Asteraceae: Gnaphalieae) based on ITS, ETS and psbA-trnH sequence data. Taxon 56:783–794

    Article  Google Scholar 

  • Funk VA, Bayer RJ, Keeley S, Chan R, Watson L, Gemeinholzer B, Schilling E, Panero JL, Baldwin BG, Garcia-Jacas N, Susanna A, Jansen RK (2005) Everywhere but Antarctica: using a supertree to understand the diversity and distribution of the Compositae. Biol Skr 55:343–374

    Google Scholar 

  • Funk VA, Anderberg AA, Baldwin BG, Bayer RJ, Bonifacino JM, Breitwieser I, Brouillet L, Carbajal R, Chan R, Coutinho AXP, Crawford DJ (2009) Compositae meta-supertree: the next generation. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the compositae. International Association for Plant Taxonomy (IAPT), Vienna, pp 747–777

    Google Scholar 

  • Galbany-Casals M, Garcia-Jacas N, Susanna A, Saez L, Benedi C (2004a) Phylogenetic relationships in the Mediterranean Helichrysum (Asteraceae, Gnaphalieae) based on nuclear rDNA ITS sequence data. Aust Syst Bot 17:241–253

    Article  CAS  Google Scholar 

  • Galbany-Casals M, Saez L, Benedi C (2004b) Taxonomy of Castroviejoa, a new genus of Gnaphalieae (Asteraceae), endemic to the Mediterranean Islands Corsica and Sardinia. Aust Syst Bot 17:581–591

    Article  Google Scholar 

  • Galbany-Casals M, Garcia-Jacas N, Sáez L, Benedí C, Susanna A (2009a) Phylogeny, biogeography, and character evolution in Mediterranean, Asiatic, and Macaronesian Helichrysum (Asteraceae, Gnaphalieae) inferred from nuclear phylogenetic analyses. Int J Plant Sci 170:365–380

    Article  CAS  Google Scholar 

  • Galbany-Casals M, Susanna A, Briones JM (2009b) Low base numbers and dysploidy in annual Helichrysum Mill. (Asteraceae: Gnaphalieae). Acta Biol Cracov Bot 51:107–114

    Google Scholar 

  • Galbany-Casals M, Andres-Sanchez S, Garcia-Jacas N, Susanna A, Rico E, Martinez-Ortega MM (2010) How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. Taxon 59:1671–1689

    Google Scholar 

  • Galbany-Casals M, Blanco-Moreno JM, Garcia-Jacas N, Breitwieser I, Smissen RD (2011) Genetic variation in Mediterranean Helichrysum italicum (Asteraceae; Gnaphalieae): do disjunct populations of subsp. microphyllum have a common origin? Plant Biol 13:678–687

    Article  PubMed  CAS  Google Scholar 

  • Georgiadou E, Rechinger KH (1980) Anaphalis. In: Rechinger KH (ed) Flora Iranica Compositae IV—Inuleae, vol 145. Akademischer Drucks- und Verlagsgesellschaft, Graz

    Google Scholar 

  • Glenny D (1997) A revision of the genus Anaphalioides (Asteraceae: Gnaphalieae). New Zeal J Bot 35:451–477

    Article  Google Scholar 

  • Glenny D, Wagstaff S (1997) Evolution and biogeography of New Zealand Anaphalis (Asteraceae: Gnaphalieae) inferred from rDNA sequences. New Zeal J Bot 35:441–449

    Article  Google Scholar 

  • Grierson AJC (1972) A new species of Anaphalis (Compositae) from Mexico. Notes Roy Bot Gard Edinburgh 31:389–392

    Google Scholar 

  • Grubov V (1998) Conspectus generis Anaphalis DC. (Compositae) Asiae centralis (in Russian). Novitates Systematicae Plantarum Vascularium 31:245–251

    Google Scholar 

  • Hilliard OM, Burtt BL (1981) Some generic concepts in Compositae—Gnaphaliinae. Bot J Linn Soc 82:181–232

    Article  Google Scholar 

  • Hooker JD (1882) Flora of British India, vol 3. L. Reeve & Co., London

  • Huelsenbeck JP, Ronquist R (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Watanabe K, Kita Y, Kawahara T, Crawford DJ, Yahara T (2000) Phylogeny and phytogeography of Eupatorium (Eupatorieae, Asteraceae): insights from sequence data of the nrDNA ITS regions and cpDNA RFLP. J Plant Res 113:79–89

    Article  CAS  Google Scholar 

  • Jeanmonod D (1996) Xanthium subg. Xanthium et Helichrysum italicum, deux cas taxonomiques ardus. Candollea 53:435–457

    Google Scholar 

  • Kitamura S (1937) Compositae Japonicae. Pars Prima Mem Coll Sci Kyoto Imp Univ Ser B Biol 13:1–421

  • Kubitzki K, Krutzsch W (1998) Origins of east and south east Asian plant diversity. In: Zhang A-L, Wu S-G (eds) Floristic characteristics and diversity of East Asian plants—Proceedings of the First International Symposium on Floristic characteristics and diversity of east Asian plants. China Higher Education Press, Beijing, pp 56–70

    Google Scholar 

  • Li X-W, Li J (1993) A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Act Bot Yunnan 15:217–231

    CAS  Google Scholar 

  • Linder C, Goertzen L, Heuvel B, Francisco-Ortega J, Jansen R (2000) The complete external transcribed spacer of 18S–26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Mol Phylogenet Evol 14:285–303

    Article  PubMed  CAS  Google Scholar 

  • Ling Y (1979) Anaphalis. In: Ling Y (ed) Flora Reipublicae Popularis Sinicae (Flora of China) (Tomus 75) Angiospermae: Dicotyledonae: Compositae (2), Inuleae-Helenieae. Science Press, Beijing, pp 141–218

    Google Scholar 

  • Liu JQ, Wang YJ, Wang AL, Ohba H, Abbott RJ (2006) Radiation and diversification within the LigulariaCremanthodiumParasenecio complex (Asteraceae) triggered by uplift of the Qinghai–Tibetan Plateau. Mol Phylogenet Evol 38:31–49

    Article  PubMed  CAS  Google Scholar 

  • Meng Y, Sun H, Yang Y-P, Nie Z-L (2010) Polyploidy and new chromosome counts in Anaphalis (Asteraceae: Gnaphalieae) from the Qinghai–Tibet Plateau of China. J Syst Evol 48:58–64

    Article  Google Scholar 

  • Merxmüller H, Leins P, Roessler H (1977) Inuleae: systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic Press, London, pp 577–602

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Okuyama Y, Fujii N, Wakabayashi M, Kawakita A, Ito M, Watanabe M, Murakami N, Kato M (2005) Nonuniform concerted evolution and chloroplast capture: heterogeneity of observed introgression patterns in three molecular data partition phylogenies of asian Mitella (Saxifragaceae). Mol Biol Evol 22:285–296

    Article  PubMed  CAS  Google Scholar 

  • Pant PC (1995) Anaphalis. In: Hajra PK, Rao RR, Singh DK, Uniyal BP (eds) Flora of India, vol 13. Botanical Survey of India, Calcutta

    Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Puttock F (1994) Re-analysis of Anderberg’s Gnaphalieae data matrix. Comps Newslett 25:1–14

    Google Scholar 

  • Qaiser M, Abid R (2003) Anaphalis. In: Qaiser M, Abid R (eds) Flora of Pakistan, vol 207. Department of Botany, University of Karachi and Missouri Botanical Press, St. Louis, pp 173–205

    Google Scholar 

  • Ree RH (2005) Phylogeny and the evolution of floral diversity in Pedicularis (Orobanchaceae). Int J Plant Sci 166:595–613

    Article  CAS  Google Scholar 

  • Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 321:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Smissen RD, Breitwieser I (2008) Species relationships and genetic variation in the New Zealand endemic Leucogenes (Asteraceae: Gnaphalieae). New Zeal J Bot 46:65–76

    Article  Google Scholar 

  • Smissen RD, Galbany-Casals M, Breitwieser I (2011) Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades. Taxon 60:649–662

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, Massachusetts

  • Wang Y-J, Liu J-Q, Miehe G (2007) Phylogenetic origins of the Himalayan endemic Dolomiaea, Diplazoptilon and Xanthopappus (Asteraceae: Cardueae) based on three DNA regions. Ann Bot 99:311–322

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-J, Susanna A, Raab-Straube EV, Milne R, Liu J-Q (2009) Island-like radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau. Biol J Linn Soc 97:893–903

    Article  Google Scholar 

  • Ward J, Bayer R, Breitwieser I, Smissen R, Galbany M, Unwin M (2009) Gnaphalieae. In: Funk V, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the Compositae. IAPT, Vienna, pp 539–588

    Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wen J, Ickert-Bond S, Nie Z-L, Li R (2010) Timing and modes of evolution of eastern Asian–North American biogeographic disjunctions in seed plants. In: Long M, Gu H, Zhou Z (eds) Darwin’s heritage today: proceedings of the Darwin 2010 Beijing International Conference. Higher Education Press, Beijing, pp 252–269

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wiens JJ (1998) Combining data sets with different phylogenetic histories. Syst Biol 47:568–581

    Article  PubMed  CAS  Google Scholar 

  • Wu CY (1987) Flora Xizangica, vol 5. Science Press, Beijing

    Google Scholar 

  • Zhang ZM, Liou JG, Coleman RG (1984) An outline of the plate tectonics of China. Bull Geol Soc Am 95:295–312

    Article  Google Scholar 

  • Zhang J-W, Nie Z-L, Wen J, Sun H (2011) Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China. Taxon 60:15–26

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Natural Science Foundation of China (NSFC 40930209 and 31061160184 to H. Sun), One Hundred Person Project of the Chinese Academy of Sciences (2011312D11022 to H. Sun), United Fund of the NSFC and Yunnan Natural Science Foundation (U1136601 to H. Sun), and the Chinese Academy of Sciences (KSCX2-EW-J-24 to Z.-L. Nie), and the John D. and Catherine T. MacArthur Foundation to J. Wen, R. Ree, and G. Mueller. Support for the senior author’s research visit at the Smithsonian was provided by a postdoctoral fellowship through the SI Fellowship program. Laboratory work was conducted in and partially supported by the Laboratory of Analytical Biology of the National Museum of Natural History, and Fieldwork in North America was supported by the Small Grants Program of the National Museum of Natural History, the Smithsonian Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Long Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, ZL., Funk, V., Sun, H. et al. Molecular phylogeny of Anaphalis (Asteraceae, Gnaphalieae) with biogeographic implications in the Northern Hemisphere. J Plant Res 126, 17–32 (2013). https://doi.org/10.1007/s10265-012-0506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0506-6

Keywords

Navigation