Skip to main content
Log in

Opportunities in intelligent modeling assistance

  • Expert Voice
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

Modeling is requiring increasingly larger efforts while becoming indispensable given the complexity of the problems we are solving. Modelers face high cognitive load to understand a multitude of complex abstractions and their relationships. There is an urgent need to better support tool builders to ultimately provide modelers with intelligent modeling assistance that learns from previous modeling experiences, automatically derives modeling knowledge, and provides context-aware assistance. However, current intelligent modeling assistants (IMAs) lack adaptability and flexibility for tool builders, and do not facilitate understanding the differences and commonalities of IMAs for modelers. Such a patchwork of limited IMAs is a lost opportunity to provide modelers with better support for the creative and rigorous aspects of software engineering. In this expert voice, we present a conceptual reference framework (RF-IMA) and its properties to identify the foundations for intelligent modeling assistance. For tool builders, RF-IMA aims to help build IMAs more systematically. For modelers, RF-IMA aims to facilitate comprehension, comparison, and integration of IMAs, and ultimately to provide more intelligent support. We envision a momentum in the modeling community that leads to the implementation of RF-IMA and consequently future IMAs. We identify open challenges that need to be addressed to realize the opportunities provided by intelligent modeling assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://www.bellairs2020.ece.mcgill.ca/.

References

  1. AI4AUI: Workshop on AI Methods for Adaptive User Interfaces (2020). https://doi.org/10.1145/3306307.3328180

  2. Agt-Rickauer, H., Kutsche, R., Sack, H.: Domore—a recommender system for domain modeling. In: Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD’18), pp. 71–82 (2018). https://doi.org/10.5220/0006555700710082

  3. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Feature extraction approaches from natural language requirements for reuse in software product lines: a systematic literature review. J. Syst. Softw. 106(C), 132–149 (2015). https://doi.org/10.1016/j.jss.2015.05.006

    Article  Google Scholar 

  4. Baki, I., Sahraoui, H.A.: Multi-step learning and adaptive search for learning complex model transformations from examples. ACM Trans. Softw. Eng. Methodol. 25(3), 20:1–20:37 (2016)

    Article  Google Scholar 

  5. Beth Kery, M., Myers, B.A.: Exploring exploratory programming. In: 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 25–29 (2017)

  6. Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion systems. In: van Vliet, H., Issarny, V. (eds.) Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2009, Amsterdam, The Netherlands, August 24–28, 2009, pp. 213–222. ACM (2009). https://doi.org/10.1145/1595696.1595728

  7. Bucchiarone, A., Cabot, J., Paige, R., Pierantonio, A.: Grand challenges in model-driven engineering: an analysis of the state of the research. Softw. Syst. Model. 19, 1–9 (2020). https://doi.org/10.1007/s10270-019-00773-6

    Article  Google Scholar 

  8. Burgueño, L., Cabot, J., Gérard, S.: An LSTM-based neural network architecture for model transformations. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 294–299. IEEE (2019)

  9. Combemale, B., Kienzle, J., Mussbacher, G., Ali, H., Amyot, D., et al.: A Hitchhiker’s guide to model-driven engineering for data-centric systems. IEEE Softw. (2020). https://doi.org/10.1109/MS.2020.2995125. https://hal.inria.fr/hal-02612087

  10. Danylenko, A., Löwe, W.: Context-aware recommender systems for non-functional requirements. In: 2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE), pp. 80–84 (2012). https://doi.org/10.1109/RSSE.2012.6233417

  11. Derakhshanmanesh, M., Ebert, J., Grieger, M., Engels, G.: Model-integrating development of software systems: a flexible component-based approach. Softw. Syst. Model. 18(4), 2557–2586 (2019)

    Article  Google Scholar 

  12. Elkamel, A., Gzara, M., Ben-Abdallah, H.: An UML class recommender system for software design. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1–8 (2016). https://doi.org/10.1109/AICCSA.2016.7945659

  13. France, R., Rumpe, B.: Model-driven development of complex software: a research roadmap. In: Future of Software Engineering (FOSE ’07), pp. 37–54 (2007)

  14. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: International Conference on Advanced Information Systems Engineering (CAISE), pp. 482–496. Springer, Berlin (2011)

  15. Hartmann, T., Moawad, A., Fouquet, F., Le Traon, Y.: The next evolution of MDE: a seamless integration of machine learning into domain modeling. In: 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 180–180 (2017). https://doi.org/10.1109/MODELS.2017.32

  16. Ibrahim, M., Ahmad, R.: Class diagram extraction from textual requirements using natural language processing (NLP) techniques. In: Proceedings of the 2nd International Conference on Computer Research and Development, pp. 200–204 (2010). https://doi.org/10.1109/ICCRD.2010.71

  17. Josifovska, K., Yigitbas, E., Engels, G.: A digital twin-based multi-modal UI adaptation framework for assistance systems in industry 4.0. In: HCI (3), Lecture Notes in Computer Science, vol. 11568, pp. 398–409. Springer, Berlin (2019)

  18. Kaiser, G.E., Feiler, P.H., Popovich, S.S.: Intelligent assistance for software development and maintenance. IEEE Softw. 5(3), 40–49 (1988). https://doi.org/10.1109/52.2023

    Article  Google Scholar 

  19. Karimi, J., Konsynsky, B.R.: An automated software design assistant. IEEE Trans. Softw. Eng. 14(2), 194–210 (1988). https://doi.org/10.1109/32.4638

    Article  Google Scholar 

  20. Kienzle, J., Mussbacher, G., Combemale, B., Bastin, L., Bencomo, N., et al.: Towards model-driven sustainability evaluation. Commun. ACM 63(3), 80–91 (2020). https://doi.org/10.1145/3371906

    Article  Google Scholar 

  21. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984). https://doi.org/10.1093/comjnl/27.2.97

    Article  MATH  Google Scholar 

  22. Kögel, S.: Recommender system for model driven software development. In: 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pp. 1026–1029. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3106237.3119874

  23. Kuschke, T., Mäder, P.: Pattern-based auto-completion of uml modeling activities. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, ASE ’14, pp. 551–556. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2642937.2642949

  24. Liew, A.: DIKIW: data, information, knowledge, intelligence, wisdom and their interrelationships. Bus. Manag. Dyn. 2, 49 (2013)

    Article  Google Scholar 

  25. Liu, C., Yang, D., Zhang, X., Ray, B., Rahman, M.M.: Recommending github projects for developer onboarding. IEEE Access 6, 52082–52094 (2018). https://doi.org/10.1109/ACCESS.2018.2869207

    Article  Google Scholar 

  26. Mazak, A., Wolny, S., Wimmer, M.: On the need for data-based model-driven engineering, pp. 103–127 (2019). https://doi.org/10.1007/978-3-030-25312-7_5

  27. McDirmid, S.: Living it up with a live programming language. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and Applications, OOPSLA ’07, pp. 623–638. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1297027.1297073

  28. Mendix Assist: https://www.mendix.com/blog/introducing-ai-assisted-development-to-elevate-low-code-platforms-to-the-next-level

  29. Mussbacher, G., Amyot, D., Breu, R., Bruel, J.M., Cheng, B., et al.: The relevance of model-driven engineering 30 years from now (2014). https://doi.org/10.1007/978-3-319-11653-2_12

  30. Pérez-Soler, S., Daniel, G., Cabot, J., Guerra, E., de Lara, J.: Towards automating the synthesis of chatbots for conversational model query. In: Proceedings of the International Conference on Exploring Modeling Methods for Systems Analysis and Development (2020). (To appear)

  31. Pérez-Soler, S., Guerra, E., de Lara, J.: Collaborative modeling and group decision making using chatbots in social networks. IEEE Softw. 35(6), 48–54 (2018). https://doi.org/10.1109/MS.2018.290101511

    Article  Google Scholar 

  32. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook, pp. 1–35. Springer US, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

    Book  MATH  Google Scholar 

  33. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T.: Recommendation Systems in Software Engineering. Springer Publishing Company, Incorporated, Berlin (2014)

    Book  Google Scholar 

  34. Rocha, A., Papa, J.P., Meira, L.A.A.: How far you can get using machine learning black-boxes. In: 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images, pp. 193–200 (2010). https://doi.org/10.1109/SIBGRAPI.2010.34

  35. Rovatsos, M., Weiss, G.: Autonomous Software, pp. 63–84. https://doi.org/10.1142/9789812775245_0003

  36. Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific model editors with automatic model completion. Simulation 86(2), 109–126 (2010). https://doi.org/10.1177/0037549709340530

    Article  Google Scholar 

  37. ServiceStudio from OutSystems: https://www.outsystems.com/ai

  38. Silva, R., Roy, C., Rahman, M., Schneider, K., Paixao, K., Maia, M.: Recommending comprehensive solutions for programming tasks by mining crowd knowledge. In: 27th International Conference on Program Comprehension (ICPC), pp. 358–368. IEEE, Association for Computing Machinery (2019)

  39. Subramaniam, K., Liu, D., Far, B.H., Eberlein, A.: UCDA: use case driven development assistant tool for class model generation. In: SEKE (2004)

  40. Svyatkovskiy, A., Zhao, Y., Fu, S., Sundaresan, N.: Pythia: AI-assisted code completion system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’19, pp. 2727–2735. Association for Computing Machinery (2019). https://doi.org/10.1145/3292500.3330699

  41. Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant for reusing open source code on the web. In: Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software Engineering, ASE ’07, pp. 204–213. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1321631.1321663

  42. Timm, I.J., Knirsch, P., Kreowski, H.J., Timm-Giel, A.: Autonomy in Software Systems, pp. 255–273. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-47450-0_17

    Book  Google Scholar 

  43. Tran, Q., Chung, L.: NFR-assistant: tool support for achieving quality. In: Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software Engineering and Technology. ASSET’99 (Cat. No.PR00122), pp. 284–289 (1999). https://doi.org/10.1109/ASSET.1999.756782

  44. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven engineering. IEEE Softw. 31(3), 79–85 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Combemale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mussbacher, G., Combemale, B., Kienzle, J. et al. Opportunities in intelligent modeling assistance. Softw Syst Model 19, 1045–1053 (2020). https://doi.org/10.1007/s10270-020-00814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-020-00814-5

Keywords

Navigation