Skip to main content
Log in

Activités antioxydante et antiplasmodiale d’extraits de Massularia acuminata (Rubiaceae)

Antioxidant and antiplasmodial activities of extracts of Massularia acuminata (Rubiaceae)

  • Phytothérapie Vétérinaire
  • Published:
Phytothérapie

Résumé

L’utilisation de Massularia acuminata (MA) par les populations Nkundo en médecine traditionnelle à Lui-Kotale en R.D. Congo aussi bien que par les bonobos nous a amenés à des investigations pharmacognosiques et phytochimiques. Le screening phytochimique des extraits aqueux de fruits (AF) et EtOH 80% d’écorces de tronc (EE) de MA ont révélé la présence d’alcaloïdes, flavonoïdes, leucoanthocyanes, saponosides et tanins. Mais également la présence d’anthocyanes, oses et holosides, quinones, sucres réducteurs dans les extraits AF, et ceux d’EE de stérols et triterpènes. La meilleure activité antioxydante est obtenue avec les extraits d’EE (CI50 = 27,45 ± 2,56 µg/ml), et la plus forte activité antiplasmodiale avec ceux d’AF (CI50 < 9,77 µg/ml) de MA. Ces résultats suggéreraient un possible comportement d’automédication, auxquels s’ajouteraient les besoins nutritionnels pour le bien-être de la santé animale.

Abstract

Using Massularia acuminata (MA) by by Nkundo populations in traditional medicine at Lui-Kotale in D.R. Congo, and by both bonobos and has led us to pharmacognostic and phytochemical investigations. The phytochemical screening of the aqueous extracts of fruit (AF) and EtOH 80% bark trunk (EA) of MA revealed the presence of alkaloids, flavonoids, leucoanthocyanes, saponins and tannins. But also the presence of anthocyanins, monosaccharides and holosides, quinones, reducing sugars in the AF, and those extracts EA sterols and triterpenes. The best antioxidant activity was obtained with extracts of EA (IC50 = 27.45 ± 2.56 mg/ml), and the highest antiplasmodial activity with those of AF (IC50 < 9.77 mg/ml) of MA. These results suggest a possible selfmedication behavior, which in addition to the nutritional needs for the welfare of the animal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fr|Références

  1. OMS (2012) Recommandation de politique générale de l’OMS: chimioprévention du paludisme saisonnier pour lutter contre le paludisme à Plasmodium falciparum en zone de forte transmission saisonnière dans la sous-région du Sahel en Afrique. Rapport du Programme Mondial de Lutte Antipaludique de l’Organisation Mondiale de la Santé (OMS)

    Google Scholar 

  2. Bruneel F, Hocqueloux L, Alberti G, et al. (2003) The clinical spectrum of severe imported malaria in the intensive care unit: report of 188 cases in adults. Am J Respir Crit Care Med 167: 684–9

    Article  PubMed  Google Scholar 

  3. Bruneel F, Tubach F, Corne P, et al. (2010) Severe imported falciparum malaria: a cohort study in 400 critically III adults. PLoS ONE 5: e13236. doi:10.1371/journal.pone.0013236

    Article  PubMed Central  PubMed  Google Scholar 

  4. Duval L, Fourment M, Nerrienet E, et al. (2010) African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc Nat Acad Sci USA 107:10561–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Duval L (2012) Plasmodium chez les grands singes africains. Rev Primatol doi:10.4000/primatologie.1178

    Google Scholar 

  6. Kaiser M, Löwa A, Ulrich M, et al. (2010) Wild chimpanzees infected with 5 Plasmodium species. Emerg Infect Dis 16:1956–9

    Article  PubMed Central  PubMed  Google Scholar 

  7. Krief S, Escalante AA, Pacheco MA, et al. (2010) On the diversity of malaria parasites in african apes and the origin of Plasmodium falciparum from bonobos. PLoS Pathog 6:e1000765. doi:10.1371/journal.ppat.1000765

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lee KS, Divis PCS, Zakaria SK, et al. (2011) Plasmodium knowlesi: Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog 7: e1002015. doi:10.1371/journal.ppat.1002015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Prugnolle F, Durand P, Neel C, et al. (2010) African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc Natl Acad Sci USA 107:1458–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Prugnolle F, Ollomo B, Durand P, et al. (2011) African monkeys are infected by Plasmodium nonhuman primate-specific strains. Proc Natl Acad Sci USA 108:11948–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fowler A, Koutsioni Y, Sommer V (2007) Leaf-swallowing in Nigerian chimpanzees: evidence for assumed self-medication. Primates 48:73–6

    Article  PubMed  Google Scholar 

  12. Huffman MA (1994) Chemo-ethology of Hominoid Interactions with Medicinal Plants and Parasites Group: A multi-disciplinary investigation into the use of medicinal plants by chimpanzees. Pan Africa News 1:3–5

    Google Scholar 

  13. Huffman MA, Gotoh S, Izutsu D, et al. (1993) Further observations on the use of the medicinal plant, Vernonia amygdalina (Del.), by a wild chimpanzee, its possible effect on parasite load, and its phytochemistry. Afr Study Monographs 14:227–40

    Google Scholar 

  14. Krief S (2004) La pharmacopée des chimpanzés. Pour La Science 325:76–80

    Google Scholar 

  15. Krief S, Hladik CM, Haxaire C (2005) Ethnomedicinal and bioactive properties of plants ingested by wild chimpanzees in Uganda. J Ethnopharmacol 101:1–15

    Article  PubMed  Google Scholar 

  16. Krief S, Huffman MA, Sévenet T, et al. (2006) Bioactive properties of plant species ingested by chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda. Am J Primatol 68:51–71

    Article  CAS  PubMed  Google Scholar 

  17. Maloueki U, Musuyu Muganza CD, Mbomba NB, et al. (2013a). Activités antimicrobiennes et antioxydantes des extraits aqueux totaux des feuilles de Megaphrynium macrostachyum (Benth.) Milne-Redh. (Marantaceae) et de Palisota hirsuta (Thunb.) K. Schum. (Commelinaceae). Congo Sci 1: 38–48

    Google Scholar 

  18. Maloueki U, Mbomba ID, Ndimbo KSP, et al. (2013b) Screening phytochimique et activités antiplasmodiales comparées de quelques plantes consommées par les bonobos (Pan paniscus) de la station de Lui-Kotale, R.D. Congo. Résumé. Ann Afr Méd 6: 64

    Google Scholar 

  19. Cousins D, Huffman MA (2002) Medicinal properties in the diet of gorillas: an ethno-pharmacological evaluation. Afr Study Monographs 23:65–89

    Google Scholar 

  20. Fruth B, Mato B, Lukoki F, et al. (2011) Care for health and body: an ethnobotanical approach to Nkundo plant use (Cuvette Centrale, DRC) with focus on the significance of indigenous knowledge for the human skin. Curare 34:263–83

    Google Scholar 

  21. Musuyu Muganza CD, Fruth BI, Nzunzu LJ, et al. (2012) In vitro antiprotozoal and cytotoxic activity of 33 ethnopharmacologically selected medicinal plants from Democratic Republic of Congo. J Ethnopharmacol 141:301–8

    Article  CAS  PubMed  Google Scholar 

  22. Ngbolua KN, Rakotoarimanana H, Rafatro H, et al. (2011) Comparative antimalarial and cytotoxic activities of two Vernonia species: V. amygdalina from the Democratic Republic of Congo and V. cinerea subsp vialis endemic to Madagascar. Int J Biol Chem Sci 5:345–53

    Google Scholar 

  23. Ngombe KN, Mbombo MP, Maloueki U, et al. (2013) Antioxidant and antihyperglycemic potential of Isolona hexaloba Engl. & Diels (Annonaceae) leaves: a preliminary study. Int J Med Plants (Photon) 105:242–9

    Google Scholar 

  24. Aladesanmi AJ, Iwalewa EO, Adebajo AC, et al. (2007) Antimicrobial and antioxidant activities of some Nigerian medicinal plants. Afr J Trad CAM 4:173–84

    Google Scholar 

  25. Bouquet A (1969) Féticheurs et médecines traditionnelles du Congo (Brazzaville). ORSTOM 36:282

    Google Scholar 

  26. Hulstaert G (1966) Notes de botanique Mongo. Académie Royale des Sciences d’Outre-Mer, Classe des Sciences Naturelles et Médicales, Bruxelles, p 212

    Google Scholar 

  27. Kayode J and Omotoyinbo MA (2008) Cultural erosion and biodiversity: conserving chewing stick knowledge in Ekiti State, Nigeria. Afr Scientist 9:41–51

    Google Scholar 

  28. Neuwinger HD (2000) African traditional medecine: a dictionary of plant use and applications. Search system for diseases. Medpharm Scientific Publishers, Stuttgart, p 589

    Google Scholar 

  29. Singh R, Pallavi KJ, Singh S, et al. (2011) Aphrodisiac agents from medicinal plants: a review. J Chem Pharm Res 3:911–21

    Google Scholar 

  30. Yakubu MT, Akanji MA, Oladiji AT, et al. (2008) Androgenic potentials of aqueous extract of Massularia acuminata (G. Don) Bullock ex Hoyl. Stem in male Wistar rats. J Ethnopharmacol 118:508–13

    Article  CAS  PubMed  Google Scholar 

  31. Bankole PO, Adekunle AA, Oyede RT, et al. (2012) Antimicrobial activities and phytochemical screening of two tropical Nigerian chewing sticks. Int J Appl Sci Technol 2:131–8

    Google Scholar 

  32. David OM, Famurewa O, and Olawale AK (2010) In vitro assessment of aqueous and ethanolic extracts of some Nigerian chewing sticks on bacteria associated with dental infections. Afr J Microbiol Res 4:1949–53

    Google Scholar 

  33. Odukoya OA, Inya-Agha SI, Segun FI, et al. (2007) Astringency as antisensitivity marker of some Nigerian chewing Sticks. J Med Sci 7:121–5

    Article  Google Scholar 

  34. Yakubu MT, Akanji MA, Oladiji AT (2007) Male sexual dysfunction and methods used in assessing medicinal plants with aphrodisiac potentials. Pharmacog Rev 1:49–56

    Google Scholar 

  35. Yakubu MT, Akanji MA (2011) Effect of aqueous extract of Massularia acuminata stem on sexual behaviour of male Wistar rats. Evid Based Complement Alternat Med doi: 10.1155/2011/738103

    Google Scholar 

  36. Yakubu MT, Awotunde OS, Ajiboye TO, et al. (2011) Pro-sexual effects of aqueous extracts of Massularia acuminata root in male Wistar rats. Andrologia 43:334–40

    Article  CAS  PubMed  Google Scholar 

  37. Karou SD, Tchacondo T, Ilboudo DP, et al. (2011) Sub-Saharan Rubiaceae: A Review of their traditional uses, phytochemistry and biological activities. Pak J Biol Sci 14:149–69

    Article  CAS  PubMed  Google Scholar 

  38. Hohmann G and Fruth B (2003) Lui-Kotal–a new site for field research on bonobos in the Salonga National Park. Pan Afr News 10:25–7

    Google Scholar 

  39. Bruneton J (1993) Pharmacognosie et phytochimie des plantes médicinales. Technique & Documentation (2e Ed.), Paris, p 914

    Google Scholar 

  40. Harbone JB (1973) Phytochemical methods. Chapman and Hall (eds), New York

    Google Scholar 

  41. Mensah AY, Hougthon PJ, Akyirem GNA, et al. (2004) Evaluation of the antioxidant and free radical scavenging properties of Secamone afzelii Rhoem. Phytother Res 18:1031–2

    Article  CAS  PubMed  Google Scholar 

  42. Okusa PN, Penge O, Devleeschouwer M, et al. (2007) Direct and indirect antimicrobial effects and antioxidant activity of Cordia gilletii De Wild (Boraginaceae). J Ethnopharmacol 112:476–81

    Article  CAS  PubMed  Google Scholar 

  43. Rieckmann KH, Campbell GH, Sax LJ, et al. (1978) Drug sensitivity of Plasmodium falciparum: an in-vitro microtechnique. Lancet 311:22–23

    Article  Google Scholar 

  44. Goli AH, Barzegar M, Sahari MA (2005) Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem 92:521–5

    Article  CAS  Google Scholar 

  45. Bouquet A et Debray M (1974) Plantes médicinales de Côte d’Ivoire. ORSTOM 32:231

    Google Scholar 

  46. Tarnaud L, Garcia C, Krief S, et al. (2010) Apports nutritionnels, dépense et bilan énergétiques chez l’homme et les primates nonhumains: aspects méthodologiques. Rev Primatol doi:10.4000/primatologie.558

    Google Scholar 

  47. Muanda NF, Dicko A, Soulimani R (2010) Chemical composition and biological activities of Ficus capenis leaves extracts. J Natural Prod 3:147–60

    Google Scholar 

  48. Tabart J, Kevers C, Sipel A, et al. (2007) Optimisation of extraction of phenolics and antioxydants from black currant leaves and buds and of stability during storage. Food Chem 105:1268–75

    Article  CAS  Google Scholar 

  49. Tabart J, Kevers C, Pincemail J, et al. (2009) Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 113:1226–33

    Article  CAS  Google Scholar 

  50. Ayoola GA, Coker HAB, Adesegun SA, et al. (2008) Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop J Pharm Res 7:1019–24

    Google Scholar 

  51. Nmorsi OPG, Ukwandu NCD and Egwunyenga AO (2007) Antioxidant status of Nigerian children with Plasmodium falciparum malaria. Afr J Microbiol Res 1:61–4

    Google Scholar 

  52. Rashid KM, Alam R, Khan S, et al. (2013) Oxidative stress marker and antioxidant status in Falciparum malaria in relation to the intensity of parasitaemia. Int J Med Res 4:3469–71

    Google Scholar 

  53. Hladik CM (1998) Aliments et médicaments: des « traditions» chez les chimpanzés et de leurs interprétations. In: Ducros A, Ducros J & Joulian F (ed) La culture est-elle naturelle ? Histoire, Epistémologie et Applications récentes du Concept de Culture. Editions Errance, Paris, pp 151–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Maloueki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maloueki, U., Kunyima, K.P., Mbomba, I.D. et al. Activités antioxydante et antiplasmodiale d’extraits de Massularia acuminata (Rubiaceae). Phytothérapie 13, 389–395 (2015). https://doi.org/10.1007/s10298-015-0937-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-015-0937-z

Mots clés

Keywords

Navigation