Skip to main content
Log in

Diffusion imaging for evaluation of tumor therapies in preclinical animal models

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

The increasing development of novel targeted therapies for treating solid tumors has necessitated the development of technology to determine their efficacy in preclinical animal models. One such technology that can non-invasively quantify early changes in tumor cellularity as a result of an efficacious therapy is diffusion MRI. In this overview we present some theories as to the origin of diffusion changes as a result of tumor therapy, a robust methodology for acquisition of apparent diffusion coefficient maps and some applications of determining therapeutic efficacy in a variety therapeutic regimens and animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curt GA (1994) The use of animal models in cancer drug discovery and development. Stem Cells 12(1):23–29

    Article  PubMed  CAS  Google Scholar 

  2. Crafts D, Wilson CB (1977) Animal models of brain tumors. Natl Cancer Inst Monogr 46:11–17

    CAS  PubMed  Google Scholar 

  3. Peterson DL, Sheridan PJ, Brown WE Jr (1995) Animal models for brain tumors: historical perspectives and future directions. J Neurosurg 80(5):865–876

    Google Scholar 

  4. Rosenblum ML, Knebel KD, Wheeler KT, Barker M, Wilson CB (1975) Development of an in vitro colony formation assay for the evaluation of in vivo chemotherapy of a rat brain tumor. In Vitro 11(5):264–273

    CAS  PubMed  Google Scholar 

  5. Rosenblum ML, Knebel KD, Vasquez DA, Wilson CB (1976) In vivo clonogenic tumor cell kinetics following 1,3-bis(2-chloroethyl)-1-nitrosourea brain tumor therapy. Cancer Res 36(10):3718–3725

    CAS  PubMed  Google Scholar 

  6. Barker M, Hoshino T, Gurcay O et al. (1973) Development of an animal brain tumor model and its response to therapy with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 33(5):976–986

    CAS  PubMed  Google Scholar 

  7. Kim B, Chenevert TL, Ross BD (1995) Growth kinetics and treatment response of the intracerebral rat 9L brain tumor model: a quantitative in vivo study using magnetic resonance imaging. Clin Cancer Res 1(6):643–650

    PubMed  CAS  Google Scholar 

  8. Ross BD, Chenevert TL, Kim B, Ben-Joseph O (1994) Magnetic resonance imaging and spectroscopy: application to experimental neuro-oncology. Q Magn Reson Biol Med 1:89–106

    Google Scholar 

  9. Ross BD, Chenevert TL, Rehemtulla A (2002) Magnetic resonance imaging in cancer research. Eur J Cancer 38(16):2147–2156

    CAS  PubMed  Google Scholar 

  10. Ross BD, Moffat BA, Lawrence TS et al. (2003) Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol Cancer Ther 2(6):581–587

    CAS  PubMed  Google Scholar 

  11. Stegman LD, Rehemtulla A, Hamstra DA et al. (2000) Diffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy. Gene Ther 7(12):1005–1010

    CAS  PubMed  Google Scholar 

  12. Zhao M, Pipe JG, Bonnett J, Evelhoch JL (1996) Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo. Br J Cancer 73(1):61–64

    CAS  PubMed  Google Scholar 

  13. Rehemtulla A, Hall DE, Stegman LD et al. (2002) Molecular imaging of gene expression and efficacy following adenoviral-mediated brain tumor gene therapy. Mol Imaging 1(1):43–55

    CAS  PubMed  Google Scholar 

  14. Chenevert TL, Stegman LD, Taylor JM et al. (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92(24):2029–2036

    PubMed  CAS  Google Scholar 

  15. Chenevert TL, McKeever PE, Ross BD (1997) Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3(9):1457–1466

    PubMed  CAS  Google Scholar 

  16. Brunberg JA, Chenevert TL, McKeever PE et al. (1995) In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol 16(2):361–371

    CAS  PubMed  Google Scholar 

  17. Kauppinen RA (2002) Monitoring cytotoxic tumour treatment response by diffusion magnetic resonance imaging and proton spectroscopy. NMR Biomed 15(1):6–17

    Article  CAS  PubMed  Google Scholar 

  18. Hakumaki JM, Poptani H, Puumalainen AM et al. (1998) Quantitative 1H nuclear magnetic resonance diffusion spectroscopy of BT4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Cancer Res 58(17):3791–3799

    CAS  PubMed  Google Scholar 

  19. Galons JP, Altbach MI, Paine-Murrieta GD, Taylor CW, Gillies RJ (1999) Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia 1(2):113–117

    CAS  PubMed  Google Scholar 

  20. Chenevert TL, Meyer CR, Moffat BA et al. (2002) Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol Imaging 1(4):336–343

    PubMed  Google Scholar 

  21. Mardor Y, Pfeffer R, Spiegelmann R et al. (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21(6):1094–1100

    PubMed  Google Scholar 

  22. Mardor Y, Roth Y, Lidar Z et al. (2001) Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res 61(13):4971–4973

    CAS  PubMed  Google Scholar 

  23. Mori S, van Zijl PC (1995) Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn Reson Med 33(1):41–52

    PubMed  CAS  Google Scholar 

  24. Wong EC, Cox RW, Song AW (1995) Optimized isotropic diffusion weighting. Magn Reson Med 34(2):139–143

    PubMed  CAS  Google Scholar 

  25. Pipe JG, Chenevert TL (1991) A progressive gradient moment nulling design technique. Magn Reson Med 19(1):175–179

    PubMed  CAS  Google Scholar 

  26. Anderson AW, Gore JC (1994) Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 32(3):379–387

    PubMed  CAS  Google Scholar 

  27. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407

    PubMed  Google Scholar 

  28. Stejskal EO, Tanner J (1965) Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    CAS  Google Scholar 

  29. Hamstra DA, Tychewicz JM, Lee KC et al. (2004) 19F Spectroscopy and diffusion weight MRI predict increased tumor response to cytosine deaminase and uracil phosphoribosyl transferase gene dependent enzyme prodrug therapy. Mol Ther 10(5): 916–928

    CAS  PubMed  Google Scholar 

  30. Hall DE, Moffat BA, Stojanovska J et al. (2004) Therapeutic Efficacy of DTI-015 using diffusion MRI as an Early Surrogate Marker. Clin Cancer Res 10(23): 7852–7859

    PubMed  CAS  Google Scholar 

  31. James K, Eisenhauer E, Christian M et al. (1999) Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst 91(6):523–528

    PubMed  CAS  Google Scholar 

  32. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280

    PubMed  CAS  Google Scholar 

  33. Ross BD, Chenevert TL, Garwood M et al. (2003) Evaluation of (E)-2’-deoxy-2’-(fluoromethylene)cytidine on the 9L rat brain tumor model using MRI. NMR Biomed 16(2):67–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments.

This work was supported by the following research grants: NIH/NCI PO1CA85878, P50CA093990, and R24CA83099

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Moffat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moffat, B., Hall, D., Stojanovska, J. et al. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. MAGMA 17, 249–259 (2004). https://doi.org/10.1007/s10334-004-0079-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-004-0079-z

Keywords

Navigation