Skip to main content

Advertisement

Log in

Optimized partial-coverage functional analysis pipeline (OPFAP): a semi-automated pipeline for skull stripping and co-registration of partial-coverage, ultra-high-field functional images

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Ultra-high-field functional MRI (UHF-fMRI) allows for higher spatiotemporal resolution imaging. However, higher-resolution imaging entails coverage limitations. Processing partial-coverage images using standard pipelines leads to sub-optimal results. We aimed to develop a simple, semi-automated pipeline for processing partial-coverage UHF-fMRI data using widely used image processing algorithms.

Materials and methods

We developed automated pipelines for optimized skull stripping and co-registration of partial-coverage UHF functional images, using built-in functions of the Centre for Functional Magnetic Resonance Imaging of the Brain's (FMRIB’s) Software library (FSL) and advanced normalization tools. We incorporated the pipelines into the FSL’s functional analysis pipeline and provide a semi-automated optimized partial-coverage functional analysis pipeline (OPFAP).

Results

Compared to the standard pipeline, the OPFAP yielded images with 15 and 30% greater volume of non-zero voxels after skull stripping the functional and anatomical images, respectively (all p = 0.0004), which reflected the conservation of cortical voxels lost when the standard pipeline was used. The OPFAP yielded the greatest Dice and Jaccard coefficients (87 and 80%, respectively; all p < 0.0001) between the co-registered participant gyri maps and the template gyri maps, demonstrating the goodness of the co-registration results. Furthermore, the greatest volume of group-level activation in the most number of functionally relevant regions was observed when the OPFAP was used. Importantly, group-level activations were not observed when using the standard pipeline.

Conclusion

These results suggest that the OPFAP should be used for processing partial-coverage UHF-fMRI data for detecting high-resolution macroscopic blood oxygenation level-dependent activations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yacoub E et al (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45(4):588–594

    Article  PubMed  CAS  Google Scholar 

  2. van der Zwaag W et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434

    Article  PubMed  Google Scholar 

  3. Duong TQ et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49(6):1019–1027

    Article  PubMed  Google Scholar 

  4. Gati JS et al (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302

    Article  PubMed  CAS  Google Scholar 

  5. Geissler A et al (2007) Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J Magn Reson Imaging 25(6):1263–1270

    Article  PubMed  Google Scholar 

  6. Okada T et al (2005) Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: measured using BOLD contrast in the primary visual area. Acad Radiol 12(2):142–147

    Article  PubMed  Google Scholar 

  7. De Martino F et al (2011) Whole brain high-resolution functional imaging at ultra high magnetic fields: an application to the analysis of resting state networks. Neuroimage 57(3):1031–1044

    Article  PubMed  Google Scholar 

  8. Vu AT et al (2016) Tradeoffs in pushing the spatial resolution of fMRI for the 7 T human connectome project. Neuroimage 154:23–32

    Article  Google Scholar 

  9. Triantafyllou C et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250

    Article  PubMed  CAS  Google Scholar 

  10. Yoo PE et al (2017) 7 T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. Neuroimage 164:214–229

    Article  PubMed  Google Scholar 

  11. Polimeni JR et al (2010) Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52(4):1334–1346

    Article  PubMed  Google Scholar 

  12. Huber L et al (2015) Cortical lamina-dependent blood volume changes in human brain at 7 T. Neuroimage 107:23–33

    Article  PubMed  Google Scholar 

  13. Siero JC et al (2015) Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magn Reson Med 73(6):2283–2295

    Article  PubMed  Google Scholar 

  14. Siero JC et al (2014) BOLD matches neuronal activity at the mm scale: a combined 7 T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 101C:177–184

    Article  Google Scholar 

  15. Yacoub E, Hu X (2001) Detection of the early decrease in fMRI signal in the motor area. Magn Reson Med 45(2):184–190

    Article  PubMed  CAS  Google Scholar 

  16. Yacoub E et al (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14(7–8):408–412

    Article  PubMed  CAS  Google Scholar 

  17. Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105(30):10607–10612

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yoo PE et al (2018) Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals. Hum Brain Mapp 39(6):2635–2650

    Article  PubMed  PubMed Central  Google Scholar 

  19. Polimeni JR et al (2017) Analysis strategies for high-resolution UHF-fMRI data. Neuroimage 168:296–320

    Article  PubMed  Google Scholar 

  20. Jenkinson M et al (2012) FSL. Neuroimage 62(2):782–790

    Article  PubMed  Google Scholar 

  21. Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044

    Article  PubMed  Google Scholar 

  22. Marques JP et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281

    Article  PubMed  Google Scholar 

  23. Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2):870–888

    Article  PubMed  Google Scholar 

  24. Smith SM et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  25. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tustison NJ et al (2014) Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99:166–179

    Article  PubMed  Google Scholar 

  27. Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044

    Article  PubMed  Google Scholar 

  28. Klein A et al (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51(1):214–220

    Article  PubMed  Google Scholar 

  29. Avants BB et al (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41

    Article  PubMed  CAS  Google Scholar 

  30. Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60(2):215–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Connolly JD, Andersen RA, Goodale MA (2003) FMRI evidence for a ‘parietal reach region’ in the human brain. Exp Brain Res 153(2):140–145

    Article  PubMed  Google Scholar 

  32. Medendorp WP et al (2005) Integration of target and effector information in human posterior parietal cortex for the planning of action. J Neurophysiol 93(2):954–962

    Article  PubMed  Google Scholar 

  33. Bremmer F et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296

    Article  PubMed  CAS  Google Scholar 

  34. Cunnington R et al (2006) The selection of intended actions and the observation of others’ actions: a time-resolved fMRI study. Neuroimage 29(4):1294–1302

    Article  PubMed  Google Scholar 

  35. Nachev P et al (2005) Volition and conflict in human medial frontal cortex. Curr Biol 15(2):122–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sumner P et al (2007) Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54(5):697–711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Binkofski F et al (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128(1–2):210–213

    Article  PubMed  CAS  Google Scholar 

  38. Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250

    PubMed  CAS  Google Scholar 

  39. Cunnington R, Bradshaw JL, Iansek R (1996) The role of the supplementary motor area in the control of voluntary movement. Hum Mov Sci 15:627–647

    Article  Google Scholar 

  40. Cunnington R et al (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15(2):373–385

    Article  PubMed  CAS  Google Scholar 

  41. Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11(6):663–672

    Article  PubMed  CAS  Google Scholar 

  42. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  43. Wright GA, Hu BS, Macovski A (1991) 1991 I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging 1(3):275–283

    Article  PubMed  CAS  Google Scholar 

  44. Triantafyllou C et al (2016) Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio. Magn Reson Med 76(6):1708–1719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Felician O et al (2004) The role of human left superior parietal lobule in body part localization. Ann Neurol 55(5):749–751

    Article  PubMed  Google Scholar 

  46. Gerstmann J (1942) Problem of imperception of disease and of impaired body territories with organic lesions. Arch Neurol Psychiatr 48:890–913

    Article  Google Scholar 

  47. Guariglia C et al (2002) Is autotopoagnosia real? EC says yes. Neuropsychologia 40(10):1744–1749

    Article  PubMed  CAS  Google Scholar 

  48. Felician O et al (2003) Pointing to body parts: a double dissociation study. Neuropsychologia 41(10):1307–1316

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office contract N66001-12-1-4045; Office
of Naval Research (ONR) Global N62909-14-1-N020; National Health and Medical Research Council of Australia (NHMRC) project grant APP1062532 and development grant APP1075117; Defence Health Foundation, Australia (booster grant); and Defence Science Institute, Australia, grant. Author P.E.Y. acknowledges the Faculty of Medicine, University of Melbourne for the Leslie Eric Paddle Scholarship in Neurology and the Melbourne Neuroscience Institute for the Strategic Australian Postgraduate Award. Author J.O.C was funded by the University of Melbourne McKenzie Fellowship. Author B.A.M acknowledges the Australian National Imaging Facility (NIF) fellowship. We acknowledge the facilities and the scientific and technical assistance of the NIF at the Melbourne Brain Centre Imaging Unit.

Author information

Authors and Affiliations

Authors

Contributions

P.E.Y conceived and designed the study, acquired the data, and performed the analyses. P.E.Y, B.A.M, J.O.C, and S.C.K interpreted the data. P.E.Y drafted the manuscript. J.O.C, S.C.K, N.L.O, R.J.O, T.J.O, S.E.J, T.J.O, and B.A.M provided critical revision of the manuscript. T.J.O and B.A.M are joint last authors.

Corresponding author

Correspondence to Peter E. Yoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Thomas J. Oxley and Bradford A. Moffat are joint last authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15,004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, P.E., Cleary, J.O., Kolbe, S.C. et al. Optimized partial-coverage functional analysis pipeline (OPFAP): a semi-automated pipeline for skull stripping and co-registration of partial-coverage, ultra-high-field functional images. Magn Reson Mater Phy 31, 621–632 (2018). https://doi.org/10.1007/s10334-018-0690-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-018-0690-z

Keywords

Navigation