Skip to main content
Log in

Topology Optimization for Design of Hybrid Lattice Structures with Multiple Microstructure Configurations

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Hybrid lattice structures consisting of multiple microstructures have drawn much attention due to their excellent performance and extraordinary designability. This work puts forward a novel design scheme of lightweight hybrid lattice structures based on independent continuous mapping (ICM) method. First, the effective elastic properties of various microstructure configurations serve as a bridge between the macrostructure and the multiple microstructures by the homogenization theory. Second, a concurrent topology optimization model for seeking optimized macroscale topology and the specified microstructures is established and solved by a generalized multi-material interpolation formulation and sensitivity analysis. Third, several numerical examples show that hybrid lattice structures with different anisotropic configurations accomplish a better lightweight effect than those with various orthogonal configurations, which verifies the feasibility of the presented method. Hence, anisotropic configurations are more conducive to the sufficient utilization of constitutive material. The proposed scheme supplies a reference for the design of hybrid lattice structures and extends the application field of the ICM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhu J, Zhou H, Wang C, et al. A review of topology optimization for additive manufacturing: status and challenges. Chin J Aeronaut. 2021;34(1):91–110.

    Article  Google Scholar 

  2. Meng L, Zhang W, Quan D, et al. From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap. Arch Comput Method E. 2020;27(3):805–30.

  3. Shi G, Guan C, Quan D, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing. Chin J Aeronaut. 2020;33(3):1252–9.

    Article  Google Scholar 

  4. Talay E, Özkan C, Gürtaş E. Designing lightweight diesel engine alternator support bracket with topology optimization methodology. Struct Multidiscip Optim. 2021;63(4):2509–29.

    Article  Google Scholar 

  5. Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf. 2019;27:461–73.

    Google Scholar 

  6. Jewett JL, Carstensen JV. Topology-optimized design, construction and experimental evaluation of concrete beams. Autom Constr. 2019;102:59–67.

    Article  Google Scholar 

  7. Wu J, Sigmund O, Groen JP. Topology optimization of multi-scale structures: a review. Struct Multidiscip Optim. 2021;63(3):1455–80.

    Article  MathSciNet  Google Scholar 

  8. Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech. 1988;2:197–224.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bendsøe MP. Optimal shape design as a material distribution problem. Struct Optim. 1989;1(3):193–202.

    Article  Google Scholar 

  10. Zhou M, Rozvany GIN. The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech. 1991;89:309–36.

    Article  Google Scholar 

  11. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech. 2003;192:227–46.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zheng J, Luo Z, Jiang C, et al. Robust topology optimization for concurrent design of dynamic structures under hybrid uncertainties. Mech Syst Signal Process. 2019;120:540–59.

    Article  Google Scholar 

  13. Takezawa A, Nishiwaki S, Kitamura M. Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys. 2010;229(6):2697–718.

    Article  MathSciNet  MATH  Google Scholar 

  14. Carraturo M, Rocca E, Bonetti E, et al. Graded-material design based on phase-field and topology optimization. Comput Mech. 2019;64(5):1589–600.

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech. 2014;81:81009.

    Article  Google Scholar 

  16. Sun Z, Cui R, Cui T, et al. An optimization approach for stiffener layout of composite stiffened panels based on moving morphable components (MMCs). Acta Mech Solida Sin. 2020;33(4):650–62.

    Article  Google Scholar 

  17. Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Comput Struct. 1993;49:885–96.

    Article  Google Scholar 

  18. Latifi Rostami SA, Kolahdooz A, Zhang J. Robust topology optimization under material and loading uncertainties using an evolutionary structural extended finite element method. Eng Anal Bound Elem. 2021;133:61–70.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yi GL, Sui YK. An adaptive approach to adjust constraint bounds and its application in structural topology optimization. J Optim Theory Appl. 2016;169(2):656–70.

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng X, Sui Y. Lightweight topology optimization with consideration of the fail-safe design principle for continuum structures. Eng Optim. 2021;53(1):32–48.

    Article  MathSciNet  Google Scholar 

  21. Zhang X, Ye H, Wei N, et al. Design optimization of multifunctional metamaterials with tunable thermal expansion and phononic bandgap. Mater Des. 2021;209:109990.

    Article  Google Scholar 

  22. Ye H, Yuan B, Li J, et al. Geometrically nonlinear topology optimization of continuum structures based on an independent continuous mapping method. Acta Mech Solida Sin. 2021;34(4):658–72.

    Article  Google Scholar 

  23. Ye H, Li J, Yuan B, et al. Acceleration design for continuum topology optimization by using Pix2pix neural network. Int J Appl Mech. 2021;13(04):2150042.

    Article  Google Scholar 

  24. Liu L, Yan J, Cheng G. Optimum structure with homogeneous optimum truss-like material. Comput Struct. 2008;86(13–14):1417–25.

    Article  Google Scholar 

  25. Wang Y, Wang MY, Chen F. Structure-material integrated design by level sets. Struct Multidiscip Optim. 2016;54(4):1145–56.

    Article  MathSciNet  Google Scholar 

  26. Rodrigues H, Guedes JM, Bendsoe MP. Hierarchical optimization of material and structure. Struct Multidiscip Optim. 2002;24(1):1–10.

    Article  Google Scholar 

  27. Xia L, Breitkopf P. Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech. 2015;286:147–67.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang C, Gu X, Zhu J, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing. Struct Multidiscip Optim. 2020;61(3):869–94.

    Article  Google Scholar 

  29. Wang Y, Zhang L, Daynes S, et al. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater Des. 2018;142:114–23.

    Article  Google Scholar 

  30. Liu P, Kang Z, Luo Y. Two-scale concurrent topology optimization of lattice structures with connectable microstructures. Addit Manuf. 2020;36:101427.

    Google Scholar 

  31. Wang L, Chan Y, Ahmed F, et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput Methods Appl Mech. 2020;372:113377.

    Article  MathSciNet  MATH  Google Scholar 

  32. Chan Y, Shintani K, Chen W. Robust topology optimization of multi-material lattice structures under material and load uncertainties. Front Mech Eng. 2019;14(2):141–52.

    Article  Google Scholar 

  33. Liu Z, Xia L, Xia Q, et al. Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations. Struct Multidiscip Optim. 2020;61(5):2227–35.

    Article  MathSciNet  Google Scholar 

  34. Wu Z, Fan F, Xiao R, et al. The substructuring-based topology optimization for maximizing the first eigenvalue of hierarchical lattice structure. Int J Numer Methods Eng. 2020;121(12):2964–78.

    Article  MathSciNet  Google Scholar 

  35. Long K, Wang X, Gu X. Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously. Acta Mech Sinica. 2018;34(2):315–26.

    Article  MathSciNet  MATH  Google Scholar 

  36. Bai S, Kang Z. Robust topology optimization for structures under bounded random loads and material uncertainties. Comput Struct. 2021;252:106569.

    Article  Google Scholar 

  37. Zhao Z, Zhou S, Feng X, et al. On the internal architecture of emergent plants. J Mech Phys Solids. 2018;119:224–39.

    Article  MathSciNet  Google Scholar 

  38. Zhao Z, Zhou S, Feng X, et al. Morphological optimization of scorpion telson. J Mech Phys Solids. 2020;135:103773.

    Article  MathSciNet  Google Scholar 

  39. Zhang H, Wu W, Kang Z, et al. Topology optimization method for the design of bioinspired self-similar hierarchical microstructures. Comput Method Appl Mech. 2020;372:113399.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang H, Luo Y, Kang Z. Bi-material microstructural design of chiral auxetic metamaterials using topology optimization. Compos Struct. 2018;195:232–48.

    Article  Google Scholar 

  41. Wang W, Ye H, Sui Y. Lightweight topology optimization with buckling and frequency constraints using the independent continuous mapping method. Acta Mech Solida Sin. 2019;32(3):310–25.

    Article  Google Scholar 

  42. Ye H, Dai Z, Wang W, et al. ICM method for topology optimization of multimaterial continuum structure with displacement constraint. Acta Mech Sinica. 2019;35(3):552–62.

    Article  MathSciNet  Google Scholar 

  43. Deng H, Vulimiri PS, To AC. An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB. Optim Eng. 2021. https://doi.org/10.1007/s11081-021-09675-3.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (No. 3192005), National Natural Science Foundation of China (No. 11872080) and Taishan University Youth Teacher Science Foundation (No. QN-01-201901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, N., Ye, H., Zhang, X. et al. Topology Optimization for Design of Hybrid Lattice Structures with Multiple Microstructure Configurations. Acta Mech. Solida Sin. 35, 367–383 (2022). https://doi.org/10.1007/s10338-021-00302-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00302-3

Keywords

Navigation