Skip to main content
Log in

On the assessment of landmark salience for human navigation

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a conceptual framework for assessing the salience of landmarks for navigation. Landmark salience is derived as a result of the observer’s point of view, both physical and cognitive, the surrounding environment, and the objects contained therein. This is in contrast to the currently held view that salience is an inherent property of some spatial feature. Salience, in our approach, is expressed as a three-valued Saliency Vector. The components that determine this vector are Perceptual Salience, which defines the exogenous (or passive) potential of an object or region for acquisition of visual attention, Cognitive Salience, which is an endogenous (or active) mode of orienting attention, triggered by informative cues providing advance information about the target location, and Contextual Salience, which is tightly coupled to modality and task to be performed. This separation between voluntary and involuntary direction of visual attention in dependence of the context allows defining a framework that accounts for the interaction between observer, environment, and landmark. We identify the low-level factors that contribute to each type of salience and suggest a probabilistic approach for their integration. Finally, we discuss the implications, consider restrictions, and explore the scope of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aivar MP, Hayhoe MM, Chizk CL, Mruczek REB (2005) Spatial memory and saccadic targeting in a natural task. J Vis 5(3):177–193

    Article  PubMed  Google Scholar 

  • Allen GL (1997) From knowledge to words to wayfinding: issues in the preduiction and comprehension of route directions. In: Hirtle SC, Frank AU (eds) Spatial information theory: a theoretical basis for GIS, international conference COSIT ‘97. Springer, Laurel Highlands, pp 363–372

    Chapter  Google Scholar 

  • Anderson ML (2003) Embodied cognition: a field guide. Artif Intell 149(1):91–130

    Article  Google Scholar 

  • Appleyard D (1969) Why buildings are known—predictive tool for architects and planners. Environ Behav 1(2):131–156

    Article  Google Scholar 

  • Ball K, Owsley C et al (1993) Visual attention problems as a predictor of vehicle crashes in older drivers. Invest Ophthalmol Vis Sci 34:3110–3123

    PubMed  CAS  Google Scholar 

  • Biederman I (1972) Perceiving real-world scenes. Science 177(4043):77–80

    Article  PubMed  CAS  Google Scholar 

  • Burnett G (2000) “Turn right at the traffic lights”: the requirement for landmarks in vehicle navigation systems. J Navig 53(3):499–510

    Article  Google Scholar 

  • Busquets D, Sierra C, De Màntaras RL (2002) A multi-agent approach to fuzzy landmark-based navigation. J Multivalued Log Soft Comput 9:195–220

    Google Scholar 

  • Busquets D, Sierra C, De Màntaras RL (2003) A multi-agent approach to qualitative landmark-based navigation. Auton Robots 15:129–154

    Article  Google Scholar 

  • Caduff D, Timpf S (2005a) The landmark spider: representing landmark knowledge for wayfinding tasks. AAAI 2005 Spring Symposium. AAAI Press, Stanford

  • Caduff D, Timpf S (2005b) The landmark spider: weaving the landmark web. STRC’05—5th Swiss Transport Research Conference. Monte Verità, Switzerland, ETH, CD-ROM

  • Chater N, Tenenbaum JB, Yuille A (2006) Probabilistic Models of Cognition: Conceptual foundations. Trends Cogn Sci 10(7):287–291

    Article  PubMed  Google Scholar 

  • Couclelis H, Golledge RG, Gale N, Tobler W (1995) Exploring the anchor-point hypothesis of spatial cognition. In: Gaerling T (ed) Urban cognition. Academic, London

    Google Scholar 

  • Daniel MP, Denis M (2004) The production of route directions: investigating conditions that favour conciseness in spatial discourse. Appl Cogn Psychol 18(1):57–75

    Article  Google Scholar 

  • De Graef P, Lauwereyns J, Verfaillie K (2000) Attentional Orienting and Scene Semantics. Psychological Reports Nr.268. Laboratory of Experimental Psychology, University of Leuven, Belgium

  • Denis M, Pazzaglia F, Cornoldi C, Bertolo L (1999) Spatial discourse and navigation: an analysis of route directions in the city of Venice. Appl Cogn Sci 13:145–174

    Article  Google Scholar 

  • Downs RM, Stea D (1977) Maps in minds:reflections on cognitive mapping. Harper & Row Publishers, New York, p 284

    Google Scholar 

  • Elias B (2003a) Determination of landmarks and reliability criteria for landmarks. Fifth Workshop on Progress in Automated Map Generalization. ICA Commission on Map Generalization, IGN, Paris

  • Elias B (2003b) Extracting landmarks with data mining methods. In: Kuhn W, Worboys M, Timpf S (eds) International conference on spatial information theory, COSIT 2003. Springer, Kartause Ittingen, pp 375–389

    Google Scholar 

  • Eriksen CW, St James JD (1986) Visual attention within and around the field of focal attention: a zoom lens model. Percept Psychophys 40(4):225–240

    PubMed  CAS  Google Scholar 

  • Eriksen CW, Yeh YY (1985) Allocation of attention in the visual field. Exp Psychol Human Percept Perform 11:583–597

    Article  CAS  Google Scholar 

  • Escrig MT, Toledo F (2000) Autonomous robot navigation using human spatial concepts. Int J Intell Syst 15(3):165–196

    Article  Google Scholar 

  • Fontaine S, Denis M (1999) The production of route instructions in underground and urban environments. In: Freksa C, Mark DM (eds) Spatial information theory: cognitive and computational foundations of geographic information science, International Conference COSIT ‘99. Springer, Stade, pp 83–94

    Chapter  Google Scholar 

  • Funes MJ, Lupianez J, Milliken B (2005) The role of spatial attention and other processes on the magnitude and time course of cueing effects. Cogn Process 6(2):98–116

    Article  PubMed  Google Scholar 

  • Gärling T (1999) Human information processing in sequential spatial choice. In: Golledge RG (ed) Wayfinding behavior: cognitive mapping and other spatial processes. John Hopkins University Press, Baltimore, pp 89–98

    Google Scholar 

  • Gärling T, Böök A, Lindberg E (1986) Spatial orientation and wayfinding in the designed environment: a conceptual analysis and some suggestions for postoccupancy evaluations. J Archit Plann Res 3:55–64

    Google Scholar 

  • Galler I (2002) Identifikation von Landmarken in 3D-Stadtmodellen. Institut für Kartographie und Geoinformation. Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Diplomarbeit

  • Gigerenzer G, Murray DJ (1987) Cognition as intuitive statistics. Erlbaum, Hillsdale

    Google Scholar 

  • Golledge RG (1991) Cognition of physical and built environments. In: Gaerling T, Evans GW (eds) Environment, cognition and action: an integrated approach. Oxford University Press, New York

    Google Scholar 

  • Golledge RG (1992) Place recognition and wayfinding—making sense of space. Geoforum 23:199–214

    Article  Google Scholar 

  • Golledge RG (1999a) Human wayfinding and cognitive maps. In: Golledge RG (ed) Wayfinding behavior: cognitive mapping and other spatial processes. John Hopkins University Press, Baltimore, pp 5–45

    Google Scholar 

  • Golledge RG (1999b) Wayfinding behavior: cognitive mapping and other spatial processes. John Hopkins University Press, Baltimore, p 428

    Google Scholar 

  • Haken H, Portugali J (2003) The face of the city is its information. J Environ Psychol 23(4):385–408

    Article  Google Scholar 

  • Hayhoe MM, Shinoda H, Shrivastava A (2000) Attention in Natural Environments. Invest Ophthalmol Vis Sci 41:422–422

    Google Scholar 

  • Henderson JM, Hollingworth A (1999) High-level Scene Perception. Annu Rev Psychol 50:243–271

    Article  PubMed  CAS  Google Scholar 

  • Hollands MA, Patla AE, Vickers JN (2002) “Look where you’re going!” Gaze Behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 143(2):221–230

    Article  PubMed  CAS  Google Scholar 

  • Itti L, Koch C, Niebur E (1998) A Model of Saliency-based Visual Attention for Rapid Scene Analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  • James W (1890) The principles of psychology. Henry Holt & Co, New York

    Google Scholar 

  • Janzen G, Turennout MV (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7(6):673–677

    Article  PubMed  CAS  Google Scholar 

  • Jensen FV (2001) Bayesian networks and decision graphs. Springer, New York

    Google Scholar 

  • Kersten D (2002) Object perception: generative image models and bayesian inference. In: Bülthoff HH et al (eds) Biologically motivated computer vision second international workshop Lecture Notes in Computer Science, vol 2525. Springer, Heidelberg, pp 207–218

    Google Scholar 

  • Kersten D, Mamassian P, Yuille A (2004) Object Perception as Bayesian inference. Annu Rev Psychol 55:271–304

    Article  PubMed  Google Scholar 

  • Kersten D, Yuille A (2003) Bayesian models of object perception. Curr Opin Neurobiol 13(2):150–158

    Article  PubMed  CAS  Google Scholar 

  • Klippel A (2004) Wayfinding choremes—conceptualizing wayfinding and route direction elements. KI 18(1):63–64

    Google Scholar 

  • Klippel A, Richter K-F, Hansen S (2005) Wayfinding choreme maps. In: Bres S, Laurini R (eds) Visual information and information systems, 8th international conference, VISUAL 2005. Springer, Amsterdam, pp 94–108

    Google Scholar 

  • Klippel A, Winter S (2005) Structural salience of landmarks for route directions. In: Cohn AG, Mark DM (eds) Spatial information theory—COSIT05. Springer, Ellicottville, pp 347–362

    Chapter  Google Scholar 

  • Koch C, Ullman S (1985) Shifts in selective visual-attention—towards the underlying neural circuitry. Human Neurobiol 4(4):219–227

    CAS  Google Scholar 

  • Kosmopoulos DI, Chandrinos KV (2002) Definition and extraction of visual landmarks for indoor robot. Methods and applications of artificial intelligence: second hellenic conference on AI, SETN 2002. Springer, Heidelberg, pp 401–412

    Google Scholar 

  • Kosslyn SM (1989) Understanding Charts and Graphs. Appl Cogn Psychol 3:185–226

    Article  Google Scholar 

  • Kubovy M, Cohen DJ, Hollier J (1999) Feature integration that routinely occurs without focal attention. Psychon Bull Rev 6(2):183–203

    PubMed  CAS  Google Scholar 

  • Kuipers BJ (1982) The “Map in the Head’’ Metaphor. Environ Behav 14(2):202–220

    Article  Google Scholar 

  • Lacroix JPW, Murre JMJ, Postma EO, van den Herik HJ (2006) Modeling recognition memory using the similarity structue of natural input. J Cogn Sci Soc 30(1):121–145

    Google Scholar 

  • Lee PU, Tappe H, Klippel A (2002) Acquisition of landmark knowledge from static and dynamic presentation of route maps. In: Gray W, Schunn C (eds) Twenty-fourth annual conference of the cognitive science society

  • Lee Y-C, Lee JD et al (2007) Visual attention in driving: the effects of cognitive load and visual disruption. Hum Factors 49(4):721–733(13)

    Article  PubMed  Google Scholar 

  • Lewis D (1973) Causality. J Philos 556–567

  • Lovelace KL, Hegarty M, Montello DR (1999) Elements of good route directions in familiar and unfamiliar environments. In: Freksa C, Mark DM (eds) Spatial information theory: cognitive and computational foundations of geographic information science, international conference COSIT ‘99. Springer, Stade, pp 65–82

    Chapter  Google Scholar 

  • Lynch K (1960) The image of the city. MIT, Boston

    Google Scholar 

  • Marcel A, Dobel C (2005) Structured perceptual input imposes an egocentric frame of reference—pointing, imagery, and spatial self-consciousness. Perception 34(5):429–451

    Article  PubMed  Google Scholar 

  • May AJ, Ross T, Bayer SH (2003a) Drivers’ information requirements when navigating in an urban environment. J Navig 56(1):89–100

    Article  Google Scholar 

  • May AJ, Ross T, Bayer SH, Tarkiainen MJ (2003b) Pedestrian navigation aids: information requirements and design principles. Personal Ubiquitous Comput 7(6):331–338

    Article  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Article  PubMed  CAS  Google Scholar 

  • Montello DR (1997) The perception and cognition of environmental distance: direct sources of information. In: Hirtle SC, Frank AU (eds) Conference on spatial information theory: a theoretical basis for GIS, COSIT’97. Springer, Laurel Highlands, pp 297–312

    Chapter  Google Scholar 

  • Montello DR (2003) Navigation. In: Shah P, Miyake A (eds) Handbook of visuospatial cognition. Cambridge University Press, Cambridge, pp 257–294

    Google Scholar 

  • Montello DR, Freundschuh S (2005) Cognition of geographic information. In: Mcmaster RB, Usery EL (eds) A research agenda for geographic information science. CRC Press, Boca Raton

    Google Scholar 

  • Moulin B, Kettani D (1999) Route generation and description using the notion of object’s influence area and spatial conceptual map. Spatial Cogn Comput 1(3):227–259

    Article  Google Scholar 

  • Müller NG, Kleinschmid A (2003) Dynamic interaction of object- and space-based attention in retinotopic visual areas. J Neurosci 23:9812–9816

    PubMed  Google Scholar 

  • Newell A, Simon HA (1972) Human problem-solving. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Newman EL, Caplan JB, Kirschen MP, Korolev IO, Sekuler R, Kahana MJ (2007) Learning your way around town: how virtual taxicab drivers learn to use both layout and landmark information. Cognition (in press)

  • Nothegger C (2003) Automatic selection of landmarks. Institute for geoinformation. Technical University of Vienna

  • Nothegger C, Winter S, Raubal M (2004) Computation of the salience of features. Spat Cogn Comput 4:113–136

    Article  Google Scholar 

  • Olshausen BA, Anderson CH, Vanessen DC (1992) Computer-simulation of a dynamic routing model of visual-attention. Invest Ophthalmol Vis Sci 33:1263–1263

    Google Scholar 

  • Parkhurst DJ, Niebur E (2003) Scene content selected by active vision. Spat Vis 16(2):125–154

    Article  PubMed  Google Scholar 

  • Posner MI (1998) Foundations of cognitive science. MIT, New York

    Google Scholar 

  • Presson CC, Montello DR (1988) Points of reference in spatial cognition—stalking the elusive landmark. Br J Dev Psychol 6(4):378–381

    Google Scholar 

  • Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks. In: Egenhofer MJ, Mark DM (eds) Geographic information science. Springer, Berlin, pp 243–259

    Chapter  Google Scholar 

  • Roge J, Pebayle T et al (2005) Useful visual field reduction as a function of age and risk of accident in simulated car driving. Invest Ophthalmol Vis Sci 46:1774–1779

    Article  PubMed  Google Scholar 

  • Ruz M, Lupianez J (2002) A review of attentional capture: on its automaticity and sensitivity to endogenous control. Psicologica 23(1):283–309

    Google Scholar 

  • Rüetschi U-J, Caduff D, Schulz F, Wolff A, Timpf S (2006) Routing by landmarks. STRC’06—sixth Swiss transport research conference. Monte Verita, Switzerland, ETH, CD-ROM

  • Schneider W, Shiffrin RM (1977) Controlled and automatic human information-processing.1. Detection, search, and attention. Psychol Rev 84:1–66

    Article  Google Scholar 

  • Scholl BJ (2001) Objects and attention: the state of the art. Cognition 80(1):1–46

    Article  PubMed  CAS  Google Scholar 

  • Scholl BJ, Tremoulet PD (2000) Perceptual causality and animacy. Trends Cogn Sci 4(8):299–309

    Article  PubMed  Google Scholar 

  • Serences JT, Schwarzbach J, Courtney SM, Golay X, Yantis S (2004) Control of object-based attention in human cortex. Cereb Cortex 14(12):1346–1357

    Article  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656

    Google Scholar 

  • Shiffrin RM, Schneider W (1977) Controlled and automatic human information-processing.2. Perceptual learning, automatic attending, and a general theory. Psychol Rev 84:127–190

    Article  Google Scholar 

  • Shinoda H, Hayhoe MM, Shrivastava A (2001) What controls attention in natural environments? Vis Res 41:3535–3545

    Article  PubMed  CAS  Google Scholar 

  • Siegel AW, White SH (1975) The development of spatial representations of large-scale environments. In: Reese HW (ed) Advances in child development and behavior. Academic, London, pp 9–55

    Google Scholar 

  • Silva MM, Groeger JA, Bradshaw MF (2006) Attention-memory interactions in scene perception. Spat Vis 19(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • Sorrows ME, Hirtle SC (1999) The nature of landmarks for real and electronic spaces. In: Freksa C, Mark DM (eds) Spatial information theory: cognitive and computational foundations of geographic information science, international conference COSIT ‘99. Springer, Stade, pp, 37–50

  • Soto D, Blanco MJ (2004) Spatial attention and object-based attention: a comparison within a single task. Vis Res 44(1):69–81

    Article  PubMed  Google Scholar 

  • Spelke ES (1990) Principles of object perception. Cogn Sci 14(1):29–56

    Article  Google Scholar 

  • Staal MA (2004) Stress, cognition, and human performance: a literature review and conceptual framework. Moffett Field, California 94035, National Aeronautics and Space Administration, Ames Research Center

  • Steck SD, Mochnatzki HF, Mallot HA (2003) The role of geographic slant in virtual environment navigation. In: Freksa C, Brauer W, Habel C, Wender KF (eds) Spatial Cognition III, LNAI 2685, Springer, Heidelberg, pp 62–76

    Chapter  Google Scholar 

  • Stevens Q (2006) The shape of urban experience: a reevaluation of Lynch’s five elements. Environ Plann B Plann Des 33(6):803–823

    Article  Google Scholar 

  • Sweller J (1988) Cognitive load during problem solving: effects on learning. Cogn Sci 12(1):257–285

    Article  Google Scholar 

  • Tezuka T, Tanaka K (2005) Landmark extraction: a web mining approach. In: Mark DM (ed) Spatial information theory—COSIT05. Springer, Ellicottville, pp 379–398

    Chapter  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  PubMed  CAS  Google Scholar 

  • Tom A, Denis M (2004) Language and spatial cognition: comparing the roles of landmarks and street names in route instructions. Appl Cogn Psychol 18(9):1213–1230

    Article  Google Scholar 

  • Trahanias PE, Velissaris S, Orphanoudakis SC (1999) Visual recognition of workspace landmarks for topological navigation. Auton Robots 7(2):143–158

    Article  Google Scholar 

  • Treisman A, Gormican S (1988) Feature analysis in early vision: evidence from search asymmetries. Psychol Rev 95(1):15–48

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Vieira A, Hayes A (1992) Automaticity and preattentive processing. Am J Psychol 105(2):341–362

    Article  PubMed  CAS  Google Scholar 

  • Treisman AM, Gelade G (1980) Feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  CAS  Google Scholar 

  • Turatto M, Mazza V, Umilta` C (2005) Crossmodal object-based attention: auditory objects affect visual processing. Cognition 96:B55–B64

    Article  PubMed  Google Scholar 

  • Tversky B (1993) Cognitive maps, cognitive collages, and spatial mental models. In: Frank AU, Campari I (eds) Conference on spatial information theory: COSIT’93. Elba Island, Italy, Springer, Berlin, pp 14–24

  • Weissensteiner E, Winter S (2004) Landmarks in the Communication of route directions. In: Egenhofer MJ, Miller H, Freksa C (eds) Geographic information science 2004. Lecture Notes in Computer Science, vol 3234. Springer, Berlin, pp 313–326

  • Werner S, Krieg-Brückner B, Mallot HA, Schweizer K, Freksa C (1997) Spatial cognition: the role of landmark, route, and survey knowledge in human and robot navigation. In: Jarke M, Pasedach K, Pohl K (eds) Informatik aktuell, Springer, Berlin, pp 41–50

  • Williams LJ (1988) Tunnel vision or general interference? cognitive load and attentional bias are both important. Am J Psychol 101(2):171–191

    Article  PubMed  CAS  Google Scholar 

  • Winter S (2003) Route adaptive selection of salient features. In: Kuhn W, Worboys M, Timpf S (eds) COSIT’03—spatial information theory: foundations of geographic information science. Springer, Heidelberg, pp 320–334

    Google Scholar 

  • Winter S, Raubal M, Nothegger C (2004) Focalizing measures of salience for route directions. In: Meng L, Zipf A, Reichenbacher T (eds) Map-based mobile services—theories, methods and design implementations. Springer Geosciences, Berlin, pp 127–142

    Google Scholar 

  • Wolfe JM (1994) Guided Search 2.0—a revised model of visual-search. Psychon Bull Rev 1(2):202–238

    Google Scholar 

  • Wood S, Cox R, Cheng P (2006) Attention design: eight issues to consider. Comput Hum Behav 22(4):588–602

    Article  Google Scholar 

  • Xu YX (2006) Understanding the object benefit in visual short-term memory: the roles of feature proximity and connectedness. Percept Psychophys 68(5):815–828

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Urs-Jakob Rueetschi for his valuable input. This work is supported by the Swiss National Science Foundation under grant number 2151-06529101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Caduff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caduff, D., Timpf, S. On the assessment of landmark salience for human navigation. Cogn Process 9, 249–267 (2008). https://doi.org/10.1007/s10339-007-0199-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-007-0199-2

Keywords

Navigation