Skip to main content
Log in

Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Spotted wing drosophila, Drosophila suzukii, is a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in life history parameters including the abiotic/biotic factors that influence these processes. Juvenile development is optimal at moderately warm temperatures, and larvae exhibit some immunity to parasitism. Adults use visual cues and substrate-borne vibrations for courtship and exhibit a bimodal locomotor activity pattern (except mated females). Under 20–27 °C and various conditions, development from egg to adult can take 10–17 days, females first lay eggs within 1–8 days and their lifetime fecundity varies from <100 to >400. Oviposition is consistently high in raspberry hosts and fruits with lower penetration force, and the presence of Wolbachia endosymbionts can lower fertility. Drosophila suzukii exhibit seasonal variation with a darker winter morph that is more cold tolerant. Also, D. suzukii likely undergo reproductive diapause in the fall, with colder temperatures and shorter day lengths influencing reproduction. To develop viable IPM programs for D. suzukii, knowledge of abiotic and biotic conditions that impact D. suzukii life history parameters and population dynamics is critical, and gaps in the current knowledge are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494. doi:10.1007/s10340-015-0681-z

    Article  Google Scholar 

  • Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc R Soc B 281:20132840. doi:10.1098/rspb.2013.2840

    Article  PubMed  PubMed Central  Google Scholar 

  • Austin AD, Browing TO (1981) A mechanism for movement of eggs along insect ovipositors. Int J Insect Morphol 10:93–108. doi:10.1016/S0020-7322(81)80015-3

    Article  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844. doi:10.1146/annurev.ento.47.091201.145300

    Article  CAS  PubMed  Google Scholar 

  • Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828

    Article  Google Scholar 

  • Bellamy DE, Sisterson MS, Walse SS (2013) Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS One 8:e61227. doi:10.1371/journal.pone.0061227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrack HJ, Smith J, Powell J, Pfeiffer DG, Koeher G, Laforest J (2012) Using volunteer-based networks to track Drosophila suzukii (Diptera: Drosophilidae) an invasive pest of fruit crops. J Integr Pest Manag 3:B1–B5. doi:10.1603/IPM12012

    Article  Google Scholar 

  • Burrack HJ, Fernandez GE, Spivey T, Kraus DA (2013) Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), and invasive frugivore. Pest Manag Sci 69:1173–1180. doi:10.1002/ps.3489

    Article  CAS  PubMed  Google Scholar 

  • Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus; recent trends and future scenarios. J R Soc Interface 9:2708–2717. doi:10.1098/rsif.2012.0138

    Article  PubMed  PubMed Central  Google Scholar 

  • Carton Y, Poirie M, Nappi AJ (2008) Insect immune resistance to parasitoids. Insect Sci 15:67–87. doi:10.1111/j.1744-7917.2008.00188.x

    Article  CAS  Google Scholar 

  • Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63:40–47. doi:10.1016/j.biocontrol.2012.05.005

    Article  Google Scholar 

  • Chabert S, Allemand R, Pyet M, Ris N, Gibert P (2013) Drosophila suzukii, versune lute biologique contre ce ravageur des fruits rouges. Phytoma 660:34–38

    Google Scholar 

  • Chandler JA, James PM, Jospin G, Lang JM (2014) The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2:e474. doi:10.7717/peerj.474

    Article  PubMed  PubMed Central  Google Scholar 

  • Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566

    Article  Google Scholar 

  • Daane KM, Wang XG, Biondi A, Miller JC, Miller B, Miller JC, Reidl H, Shearer PW, Guerrieri E, Giorgini M, Buffington M, van Achterberg K, Song Y, Kang T, Yi H, Jung C, Lee DW, Chung B-K, Hoelmer KA, Walton VM (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J Pest Sci. doi:10.1007/s10340-016-0740-0

    Google Scholar 

  • Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R (2011) Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci 67:1368–1374. doi:10.1002/ps.2280

    Article  CAS  PubMed  Google Scholar 

  • Dekker T, Revadi S, Mansourian S, Tamasamy S, Lebreton S, Becher PG, Angeli S, Rota-Stabelli O, Anfora G (2015) Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. Proc R Soc B 282:20142018. doi:10.1098/rspb.2014.3018

    Article  Google Scholar 

  • Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VL (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383

    Article  Google Scholar 

  • Emiljanowicz LM, Ryan GD, Langille A, Newman J (2014) Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ Entomol 107:1392–1398. doi:10.1603/EC13504

    Article  PubMed  Google Scholar 

  • Ferguson CTJ, O’Neill TL, Audsley N, Isaac RE (2015) The sexual dimorphic behavior of adult Drosophila suzukii: elevated female locomotor activity and loss of siesta is a post-mating response. J Exp Biol. doi:10.1242/jeb.125468

    Google Scholar 

  • Ferro DN (1987) Insect pest outbreaks in agroecosystems. In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic Press Inc, San Diego, pp 195–212

    Google Scholar 

  • Fuyama Y (1979) A visual stimulus in the courtship of Drosophila suzukii. Experientia 35:1327–1328

    Article  Google Scholar 

  • Good T, Tatar M (2001) Age-specific mortality and reproduction response to adult dietary restriction in Drosophila melanogaster. J Insect Physiol 47:1467–11473

    Article  CAS  PubMed  Google Scholar 

  • Hamby KA, Becher PG (2016) Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J Pest Sci (submitted)

  • Hamby KA, Hernández A, Boundy-Mills K, Zalom FG (2012) Yeast associations of spotted wing drosophila (Drosophila suzukii, Diptera: Drosophilidae) in cherries and raspberries. Appl Environ Microb 78:4869–4873. doi:10.1128/AEM.00841-12

    Article  CAS  Google Scholar 

  • Hamby KA, Kwok RS, Zalom FG, Chiu JC (2013) Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides. PLoS One 8:e68472. doi:10.1371/journal.pone.0068472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamm CA, Begun DJ, Vo A, Smith CCR, Saelao P, Shaver AO, Jaenike J, Turelli M (2014) Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol 23:4871–4885. doi:10.1111/mec.12901

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardin JA, Kraus DA, Burrack HJ (2015) Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol Exp Appl 56:59–65. doi:10.1111/eea.12311

    Article  Google Scholar 

  • Harris DW, Hamby KA, Wilson HE, Zalom FG (2014) Seasonal monitoring of Drosophila suzukii (Diptera: Drosophilidae) in a mixed fruit production system. J Asia Pac Entomol 17:857–864. doi:10.1016/j.aspen.2014.08.006

    Article  Google Scholar 

  • Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357. doi:10.1002/ps.2265

    Article  CAS  PubMed  Google Scholar 

  • Haye T, Gariepy T, Hoelmer K, Rossi JP, Streito JC, Tassus X, Desneux N (2015) Range expansion of the invasive brown marmorated stinkbug, Halyomorpha halys: an increasing threat to field, fruit and vegetable crops worldwide. J Pest Sci 88:665–673. doi:10.1007/s10340-015-0670-2

    Article  Google Scholar 

  • Haye T, Girod P, Cuthbertson AGS, Wang XG, Daane KM, Hoelmer KA, Baroffio C, Zhang JP, Desneux N (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci. doi:10.1007/s10340-016-0737-8

    Google Scholar 

  • Ioriatti C, Walton VM, Dalton DT, Anfora G, Grassi A, Maistri S, Mazzoni V (2015) Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions. J Econ Entomol 108:1148–1155

    Article  CAS  PubMed  Google Scholar 

  • Jakobs R, Gariepy TD, Sinclair BJ (2015) Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J Insect Physiol 79:1–9. doi:10.1016/j.jinsphys.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo SL, Mehlferber E, Moore PJ (2015) Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol Entomol 40:2–9. doi:10.1111/phen.12082

    Article  Google Scholar 

  • Kaçar G, Wang X, Stewart TJ, Daane KM (2016) Overwintering survival of Drosophila suzukii (Diptera: Drosophilidae) and the effect of food on adult survival in California’s San Joaquin Valley. Environ Entomol. doi:10.1093/ee/nvv182

    Google Scholar 

  • Kacsoh BZ, Schlenke TA (2012) High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS One 7:e34721. doi:10.1371/journal.pone.0034721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama N, Abbott JK, Kjærandsen J, Takahashi Y, Svensson EI (2014) Sexual selection on wing interference patterns in Drosophila melanogaster. PNAS 111:15144–15148. doi:10.1073/pnas.1407595111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermann V, Loeschcke V, Hoffmann AA, Kristensen TN, Fløjgaard C, David JR, Svenning JC, Overgaard J (2012) Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377–3389. doi:10.1111/j.1558-5646.2012.01685.x

    Article  PubMed  Google Scholar 

  • Kimura MT, Beppu K (1993) Climatic adaptations in the Drosophila immigrans group: seasonal migration and thermal tolerance. Ecol Entomol 18:141–149. doi:10.1111/j.1365-2311.1993.tb01195.x

    Article  Google Scholar 

  • Kinjo H, Kunimi Y, Nakai M (2014) Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 49:297–304. doi:10.1007/s13355-014-0249-z

    Article  Google Scholar 

  • Kopp A, True JR (2002) Evolution of male sexual characters in the oriental Drosophila melanogaster species group. Evol Dev 4:278–291. doi:10.1046/j.1525-142X.2002.02017.x

    Article  PubMed  Google Scholar 

  • Lee JC, Bruck DJ, Curry H, Edwards D, Haviland DR, Van Steenwyk RA, Yorgey BM (2011) The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Mang Sci 67:1358–1367. doi:10.1002/ps.2225

    Article  CAS  Google Scholar 

  • Lee JC, Dalton DT, Swoboda-Bhattarai KA, Bruck DJ, Burrack HJ, Strik BC, Woltz JM, Walton VM (2015a) Characterization and manipulation of fruit susceptibility to Drosophila suzukii. J Pest Sci. doi:10.1007/s10340-015-0692-9

    Google Scholar 

  • Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Van Timmeren S, Bruck DJ (2015b) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Am 108:117–129. doi:10.1093/aesa/sau014

    Article  Google Scholar 

  • Lee JC, Shearer PW, Barrantes LD, Beers EH, Burrack HJ, Dalton DT, Dreves AJ, Gut LJ, Hamby KA, Haviland DR, Isaacs R, Nielsen AL, Richardson T, Rodriguez-Saona CR, Stanley CA, Walsh DB, Walton VM, Yee WL, Zalom FG, Bruck DJ (2013) Trap designs for monitoring Drosophila suzukii (Diptera: Drosophilidae). Environ Entomol 42:1348–1355

  • Lin Q-C, Zhai Y-F, Zhang A-S, Men X-Y, Zhang X-Y, Zalom FG, Zhou C-G, Yu Y (2014a) Comparative developmental times and laboratory life tables for Drosophlia suzukii and Drosophila melanogaster (Diptera: Drosophilidae). Fla Entomol 97:1434–1442. doi:10.1653/024.097.0418

    Article  Google Scholar 

  • Lin Q-C, Zhai Y-F, Zhou C-G, Li L-L, Zhuang Q-Y, Zhang X-Y, Zalom FG, Yu Y (2014b) Behavioral rhythms of Drosophila suzukii and Drosophila melanogaster. Fla Entomol 97:1424–1433. doi:10.1653/024.097.0417

    Article  Google Scholar 

  • Mazzetto F, Pansa MG, Ingegno BL, Tavella L, Alma A (2015) Monitoring of the exotic fly Drosophila suzukii in stone, pome and soft fruit orchards in NW Italy. J Asia Pac Entomol 18:321–329

    Article  Google Scholar 

  • Mazzetto F, Marchetti E, Sacco D, Francati S, Jucker C, Lupi D, Tavella L (2016) Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J Pest Sci. doi:10.1007/s10340-016-0746-7

    Google Scholar 

  • Mazzoni V, Anfora G, Virant-Doberlet M (2013) Substrate vibrations during courtship in three Drosophila species. PLoS One 8:e80708. doi:10.1371/journal.pone.0080708

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller B, Anfora G, Buffington M, Daane KM, Dalton DT, Hoelmer KM, Rossi Stacconi MV, Grassi A, Ioriatti C, Loni A, Miller JC, Ouantar M, Wang X, Wiman NG, Walton VM (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. B Insectol 68:255–263

    Google Scholar 

  • Min K-J, Hogan MF, Tatar M, O’Brien DM (2006) Resource allocation to reproduction and soma in Drosophila: a stable isotope analysis of carbon from dietary sugar. J Insect Physiol 52:763–770. doi:10.1016/j.jinsphys.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  • Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomol Sci 13:60–67

    Article  Google Scholar 

  • Monceau K, Bonnard O, Thiéry D (2014) Vespa velutina: a new invasive predator of honeybees in Europe. J Pest Sci 87:1–16. doi:10.1007/s10340-013-0537-3

    Article  Google Scholar 

  • Nomano FY, Mitsui H, Kimura MT (2015) Capacity of Japanese Asobara species (Hymenoptera; Braconidae) to parasitize a fruit pest Drosophila suzukii (Diptera; Drosophilidae). J Appl Entomol 139:105–113

    Article  Google Scholar 

  • Pimentel D (1993) Habitat factors in new pest invasions. In: Kim KC, McPheron BA (eds) Evolution of insect pests—patterns of variation. Wiley, New York, pp 165–181

    Google Scholar 

  • Pimentel D, Zuniga R, Morrisonn D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi:10.1016/j.ecolecon.2004.10.002

    Article  Google Scholar 

  • Revadi S, Lebreton S, Witzgall P, Anfora G, Dekker T, Becher PG (2015) Sexual behavior of Drosophila suzukii. Insects 6:183–196. doi:10.3390/insects6010183

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi Stacconi MV, Grassi A, Dalton DT, Miller B, Ouantar M, Loni A, Ioriatti C, Walton VM, Anfora G (2013) First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas. Entomologia 1:11–16. doi:10.4081/entomologia.2013.e3

    Article  Google Scholar 

  • Rossi Stacconi MV, Buffington M, Daane KM, Dalton DT, Grassi A, Kaçar G, Miller B, Miller JC, Baser N, Ioriatti C, Walton VM, Wiman NG, Wang X, Anfora G (2015) Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol Control 84:28–35. doi:10.1016/j.biocontrol.2015.02.003

    Article  Google Scholar 

  • Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A, Kankare M (2015) seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci Rep 5:11197. doi:10.1038/srep11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt PS, Paaby AB (2008) Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster. Evolution 62:1204–1215. doi:10.1111/j.1558-5646.2008.00351.x

    Article  PubMed  Google Scholar 

  • Schmidt PS, Matzkin LM, Ippolito M, Eanes WF (2005) Geographic variation in diapause incidence, life history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59:1721–1732. doi:10.1111/j.0014-3820.2005.tb01821.x

    Article  PubMed  Google Scholar 

  • Sexton R, Palmer JM, Whyte NA, Littlejohns S (1997) Cellulase, fruit softening, and abscission in red raspberry Rubus ideaeus L. cv Glen Clova. Ann Bot 80:371–376. doi:10.1006/anbo.1997.0465

    Article  CAS  Google Scholar 

  • Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol 16:11. doi:10.1186/s12898-016-0070-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Shevtsova E, Hansson C, Janzen DH, Kjærandsen J (2011) Stable structural color patterns displayed on transparent insect wings. PNAS 108:668–673. doi:10.1073/pnas.1017393108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siozios S, Cestaro A, Kaur R, Pertot I, Rota-Stabelli O, Anfora G (2013) Draft genome sequence of the Wolbachia endosymbiont of Drosophila suzukii. Genome Announc 1:e00032-13. doi:10.1128/genomeA.00032-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokolowski MB, Kent C, Wong J (1984) Drosophila larval foraging behaviour: developmental stages. Anim Behav 32:645–651

    Article  Google Scholar 

  • Stahl K, Moore RD, McKendry IG (2006) Climatology of winter cold spells in relation to mountain pine beetle mortality in British Columbia, Canada. Clim Res 32:13–23. doi:10.3354/cr032013

    Article  Google Scholar 

  • Stephens AR, Asplen MK, Hutchinson WD, Venette RC (2015) Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environ Entomol 44:1619–1626. doi:10.1093/ee/nvv134

    Article  CAS  PubMed  Google Scholar 

  • Stewart TJ, Wang X-G, Molinar A, Daane KM (2014) Factors limiting peach as a potential host for Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 107:1771–1779. doi:10.1603/EC14197

    Article  PubMed  Google Scholar 

  • Tatar M, Chien S, Priest NK (2001) Negligible senescence during reproductive dormancy in Drosophila melanogaster. Am Nat 158:248–258. doi:10.1086/321320

    Article  CAS  PubMed  Google Scholar 

  • Tatum EL (1939) Nutritional requirements of Drosophila melanogaster. Proc Natl Acad Sci USA 25:490–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510. doi:10.1603/EN13200

    Article  PubMed  Google Scholar 

  • Tochen S, Walton VM, Lee JC (2016) Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J Pest Sci (in press)

  • Tochen S, Woltz JM, Dalton DT, Lee JC, Wiman NG, Walton VM (2015) Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J Appl Entomol. doi:10.1111/jen.12247

    Google Scholar 

  • Tomaru M, Yamada H (2011) Courtship of Drosophila, with a special interest in courtship songs. Low Temp Sci 69:61–85

    Google Scholar 

  • Tonina L, Mori N, Giomi F, Battisti A (2016) Development of Drosophila suzukii at low temperatures in mountain areas. J Pest Sci. doi:10.1007/s10340-016-0730-2

    Google Scholar 

  • Tu MP, Tatar M (2003) Juvenile diet restriction and the aging and reproduction of adult Drosophila melanogaster. Aging Cell 2:327–333

    Article  CAS  PubMed  Google Scholar 

  • Wallingford AK, Lee JC, Loeb GM (2016) The influence of temperature and photoperiod on the reproductive diapause and cold tolerance of spotted-wing drosophila, Drosophila suzukii (Matsumura). Entomol Exp Appl in press

  • Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:G1–G7. doi:10.1603/IPM10010

    Article  Google Scholar 

  • Wang XG, Kaçar G, Biondi A, Daane KM (2016a) Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol Control 96:64–71. doi:10.1016/j.biocontrol.2016.02.004

    Article  Google Scholar 

  • Wang XG, Stewart TG, Biondi A, Chavez BM, Ingels C, Caprile JA, Grant J, Walton VM, Daane KM (2016b) Population dynamics and ecology of Drosophila suzukii in Central California. J Pest Sci. doi:10.1007/s10340-016-0747-6

    Google Scholar 

  • Wiman NG, Walton VM, Dalton DT, Anfora G, Burrack HJ, Chiu JC, Daane KM, Grassi A, Miller B, Tochen S, Wang X, Ioriatti C (2014) Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii population estimation. PLoS One 9:3106909. doi:10.1371/journal.pone.0106909

    Google Scholar 

  • Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Rossi Stacconi V, Shearer PW, Tanigoshi L, Wang X, and Walton VM (2016) Drosophila suzukii population response to the environment and management strategies. J Pest Sci. doi:10.1007/s10340-016-0757-4

  • Zerulla FN, Schmidt S, Streitberger M, Zebitz CPW, Zelger R (2015) On the overwintering ability of Drosophila suzukii in South Tyrol. J Berry Res 5:41–48. doi:10.3233/JBR-150089

    Google Scholar 

Download references

Acknowledgments

We thank Adam Cave, Christina Fieland, and Amanda Lake, USDA-ARS Corvalis, OR, and Daniel Dalton, Oregon State University, for assistance and rearing of D. suzukii used in assays. We thank Nathalie Steinhauer, University of Maryland, for translating Chabert et al. (2013). We thank Dennis Margosan, USDA-ARS Parlier, CA, for his SEM images. Funding was provided by the USDA SCRI Grant 2010-51181-21167, and USDA CRIS 5358-22000-037-00D. Antonio Biondi received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement 318246, and from the Italian Ministry of Education, University and Research (PRIN project GEISCA, 2010CXXHJE_004, and SIR project ENTOBIONANO, RBSI14I02A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Hamby.

Additional information

Communicated by M. Traugott.

Special Issue: Spotted Wing Drosophila.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamby, K.A., E. Bellamy, D., Chiu, J.C. et al. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii . J Pest Sci 89, 605–619 (2016). https://doi.org/10.1007/s10340-016-0756-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0756-5

Keywords

Navigation