Skip to main content
Log in

Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The invasive vinegar fly Drosophila suzukii not only infests and damages numerous fruit crops but also develops in many wild fruit species in semi-natural habitats. Biological control in these refuges could reduce D. suzukii populations and minimize their dispersal into fruit crops. We investigated parasitization of D. suzukii by the pupal parasitoid Trichopria drosophilae in seven common wild fruit species. Development and nutrient content of D. suzukii differed among the fruit species. Nevertheless, T. drosophilae significantly reduced D. suzukii numbers in all fruits. The development of T. drosophilae was affected by both the fruit species and the quality of the pupal host (size, nutrient content). In olfactometer assays, parasitoid females preferred infested fruits to an empty control and to most non-infested fruits, but spent an equal amount of time on the walking arena above the infested and non-infested fruits of Rhamnus cathartica and Viscum album. Our results show that T. drosophilae can utilize D. suzukii hosts from a variety of wild fruit species and therefore has the potential to be used as a control agent of D. suzukii in semi-natural habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is available at figshare: https://doi.org/10.6084/m9.figshare.11317961.

References

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494

    Google Scholar 

  • Atkinson MD, Atkinson E (2002) Sambucus nigra L. J Ecol 90:895–923

    Google Scholar 

  • Benelli G, Giunti G, Tena A, Desneux N, Caselli A, Canale A (2017) The impact of adult diet on parasitoid reproductive performance. J Pest Sci 90:807–823

    Google Scholar 

  • Bing X, Gerlach J, Loeb G, Buchon N (2018) Nutrient-dependent impact of microbes on Drosophila suzukii development. mBio 9:e02199–02117

    Google Scholar 

  • Biondi A, Wang X, Miller JC, Miller B, Shearer PW, Zappalà L, Siscaro G, Walton VW et al (2017) Innate olfactory responses of Asobara japonica toward fruits infested by the spotted wing drosophila. J Insect Behav 30:495–506

    Google Scholar 

  • Briem F, Eben A, Gross J, Vogt H (2016) An invader supported by a parasite: Mistletoe berries as a host for food and reproduction of spotted wing Drosophila in early spring. J Pest Sci 89:749–759

    Google Scholar 

  • Briggs J (2011) Mistletoe (Viscum album); a brief review of its local status with recent observations on its insect associations and conservation problems. Proc Cotteswold Nat Field Club 45:181–193

    Google Scholar 

  • Carton Y, Boulétreau M, Van Alphen JJM, van Lenteren JC (1986) The Drosophila parasitic wasps. In: Ashburne M (ed) The genetics and biology of Drosophila, vol 3e. Academic Press London, UK, pp 347–389

    Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    CAS  PubMed  Google Scholar 

  • Daane KM, Wang X-G, Biondi A, Miller B, Millre JC, Riedl H, Shearer PW, Guerrieri E et al (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J Pest Sci 89:823–835

    Google Scholar 

  • Deng SX, West BJ, Jensen CJ (2013) UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J Anal Methods Chem. https://doi.org/10.1155/2013/710972

    Article  PubMed  PubMed Central  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  PubMed  Google Scholar 

  • Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds—the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604

    CAS  PubMed  Google Scholar 

  • Ellers J, Ruhe B, Visser B (2011) Discriminating between energetic content and dietary composition as an explanation for dietary restriction effects. J Insect Physiol 57:1670–1676

    CAS  PubMed  Google Scholar 

  • Farnsworth D, Hamby K, Bolda M, Goodhue R, Williams J, Zalom F (2017) Economic analysis of revenue losses and control costs associated with the spotted wing drosophila (Drosophila suzukii (Matsumura)) in the California raspberry industry. Pest Manag Sci 73:1083–1090

    CAS  PubMed  Google Scholar 

  • Foray V, Pelisson P-F, Bel-Venner M-C, Desouhant E, Venner S, Menu F, Giron D, Rey B (2012) A handbook for uncovering the complete energetic budget in insects: the van Handel’s method (1985) revisited. Physiol Entomol 37:295–302

    Google Scholar 

  • Giraudoux P (2018) pgirmess: spatial analysis and data mining for field ecologists. R package version 1.6.9. https://CRAN.R-project.org/package=pgirmess. Accessed Aug 2019

  • Gols R (2014) Direct and indirect chemical defences against insects in a multitrophic framework. Plant Cell Environ 37:1741–1752

    PubMed  Google Scholar 

  • Gonzalez-Cabrera J, Moreno-Carrillo G, Sanchez-Gonzalez JA, Mendoza-Ceballos MY, Arredondo-Bernal HC (2019) Single and combined release of Trichopria drosophilae (Hymenoptera: Diapriidae) to control Drosophila suzukii (Diptera: Drosophilidae). Neotrop Entomol. https://doi.org/10.1007/s13744-019-00707-3

    Article  PubMed  Google Scholar 

  • Harvey JA (2005) Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomol Exp Appl 117:1–13

    Google Scholar 

  • Haye T, Girod P, Cuthbertson A, Wang X, Daane K, Hoelmer K, Baroffio C, Zhang J et al (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci 89:643–651

    Google Scholar 

  • Hennig E, Mazzi D (2018) Spotted wing drosophila in sweet cherry orchards in relation to forest characteristics, bycatch, and resource availability. Insects 9:118

    PubMed Central  Google Scholar 

  • Izhaki I (2002) Emodin - a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217

    CAS  Google Scholar 

  • Jervis MA, Ellers J, Harvey JA (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu Rev Entomol 53:361–385

    CAS  PubMed  Google Scholar 

  • Kaçar G, Wang X-G, Biondi A, Daane KM (2017) Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE 12:e0183525

    PubMed  PubMed Central  Google Scholar 

  • Kaspi R, Mossinson S, Drezner T, Kamensky B, Yuval B (2002) Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiol Entomol 27:29–38

    Google Scholar 

  • Kenis M, Tonina L, Eschen R, van der Sluis B, Sancassani M, Mori N, Haye T, Helsen H (2016) Non-crop plants used as hosts by Drosophila suzukii. J Pest Sci 89:735–748

    Google Scholar 

  • Knoll V, Ellenbroek T, Romeis J, Collatz J (2017) Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii. Sci Rep 7:40697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Van Timmeren S, Bruck DJ (2015) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Am 108:117–129

    Google Scholar 

  • Lee JC, Wang X, Daane KM, Hoelmer KA, Isaacs R, Sial AA, Walton VM (2019) Biological control of spotted-wing drosophila (Diptera: Drosophilidae)—current and pending tactics. J Integr Pest Manag 10:1–9

    Google Scholar 

  • Lieurance D, Chakraborty S, Whitehead SR, Powell JR, Bonello P, Bowers MD, Cipollini D (2015) Comparative herbivory rates and secondary metabolite profiles in the leaves of native and non-native Lonicera species. J Chem Ecol 41:1069–1079

    CAS  PubMed  Google Scholar 

  • Mazzi D, Bravin E, Meraner M, Finger R, Kuske S (2017) Economic impact of the introduction and establishment of Drosophila suzukii on sweet cherry production in Switzerland. Insects 8:18

    PubMed Central  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    CAS  PubMed  Google Scholar 

  • Ode PJ (2019) Plant toxins and parasitoid trophic ecology. Curr Opin Insect Sci 32:118–123

    PubMed  Google Scholar 

  • Oudman L, Van Delden W, Kamping A, Bijlsma R (1992) Interaction between the Adh and alpha Gpdh loci in Drosophila melanogaster: adult survival at high temperature. Heredity 68:289–297

    CAS  PubMed  Google Scholar 

  • Poyet M, Le Roux V, Gibert P, Meirland A, Prevost G, Eslin P, Chabrerie O (2015) The wide potential trophic niche of the Asiatic fruit fly Drosophila suzukii: The key of its invasion success in temperate Europe? PLoS ONE 10:e0142785

    PubMed  PubMed Central  Google Scholar 

  • Rega C, Bartual AM, Bocci G, Sutter L, Albrecht M, Moonen AC, Jeanneret P, van der Werf W et al (2018) A pan-European model of landscape potential to support natural pest control services. Ecol Indic 90:653–664

    Google Scholar 

  • Rivero A, Casas J (1999) Incorporating physiology into parasitoid behavioral ecology: the allocation of nutritional resources. Popul Ecol 41:39–45

    Google Scholar 

  • Romani R, Isidoro N, Bin F, Vinson SB (2002) Host recognition in the pupal parasitoid Trichopria drosophilae: a morpho-functional approach. Entomol Exp Appl 105:119–128

    CAS  Google Scholar 

  • Rossi Stacconi MV, Amiresmaeili N, Biondi A, Carli C, Caruso S, Dindo ML, Francati S, Gottardello A et al (2018) Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol Control 117:188–196

    Google Scholar 

  • Rossi Stacconi MV, Grassi A, Ioriatti C, Anfora G (2019) Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. Biocontrol 64:9–19

    CAS  Google Scholar 

  • Sánchez_Ramos I, Gómez-Casado E, Fernández CE, González-Núñez M (2019) Reproductive potential and population increase of Drosophila suzukii at constant temperatures. Entomol Gen 39:103–115

    Google Scholar 

  • Santoiemma G, Mori N, Tonina L, Marini L (2018) Semi-natural habitats boost Drosophila suzukii populations and crop damage in sweet cherry. Agric Ecosyst Environ 257:152–158

    Google Scholar 

  • Santoiemma G, Trivellato F, Caloi V, Mori N, Marini L (2019) Habitat preference of Drosophila suzukii across heterogeneous landscapes. J Pest Sci 92:485–494

    Google Scholar 

  • Schoonhoven LM, Loon JJA, Dicke M (2005) Insect plant biology, 2nd edn. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Söderström B, Svensson B, Vessby K, Glimskär A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1839–1863

    Google Scholar 

  • Steidle JL, Schöller M (1997) Olfactory host location and learning in the granary weevil parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). J Insect Behav 10:331–342

    Google Scholar 

  • Tait G, Grassi A, Pfab F, Crava CM, Dalton DT, Magarey R, Ometto L, Vezzulli S et al (2018) Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy. J Pest Sci 91:1213–1224

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

  • Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510

    PubMed  Google Scholar 

  • Tochen S, Walton VM, Lee JC (2016) Impact of floral feeding on adult Drosophila suzukii. J Pest Sci 89:793–802

    Google Scholar 

  • Tonina L, Mori N, Giomi F, Battisti A (2016) Development of Drosophila suzukii at low temperatures in mountain areas. J Pest Sci 89:667–678

    Google Scholar 

  • Tonina L, Mori N, Sancassani M, Dall’Ara P, Marini L (2018) Spillover of Drosophila suzukii between noncrop and crop areas: implications for pest management. Agric Forest Entomol 20:575–581

    Google Scholar 

  • Tschumi M, Albrecht M, Bärtschi C, Collatz J, Entling MH, Jacot K (2016) Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric Ecosyst Environ 220:97–103

    Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Google Scholar 

  • Vet LEM, Groenewold AW (1990) Semiochemicals and learning in parasitoids. J Chem Ecol 16:3119–3135

    CAS  PubMed  Google Scholar 

  • Visser B, Ellers J (2008) Lack of lipogenesis in parasitoids: a review of physiological mechanisms and evolutionary implications. J Insect Physiol 54:1315–1322

    CAS  PubMed  Google Scholar 

  • Vu VQ (2011) ggbiplot: A ggplot2 based biplot. R package version 0.55. http://github.com/vqv/ggbiplot. Accessed Aug 2019

  • Wang X-G, Kaçar G, Biondi A, Daane KM (2016) Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61:387–397

    CAS  Google Scholar 

  • Wang X-G, Serrato MA, Son Y, Walton VM, Hogg BN, Daane KM (2018) Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera: Drosophilidae). Biol Control 47:764–772

    Google Scholar 

  • Wong JS, Cave AC, Lightle DM, Mahaffee WF, Naranjo SE, Wiman NG, Woltz JM, Lee JC (2018) Drosophila suzukii flight performance reduced by starvation but not affected by humidity. J Pest Sci 91:1269–1278

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Drosophila suzukii R & D Task Force (funded by the Swiss Federal Office for Agriculture FOAG). We thank the botanical garden of the University of Zurich for providing Viscum album fruit and Daniel Schlagenhauf for his help in collecting them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Collatz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by A. Biondi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, S., Boycheva-Woltering, S., Romeis, J. et al. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J Pest Sci 93, 627–638 (2020). https://doi.org/10.1007/s10340-019-01180-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-019-01180-y

Keywords

Navigation