Skip to main content

Advertisement

Log in

Long-term effects of salvage logging on stand composition in seminatural spruce forests

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The tree diameter distribution was used to characterize the impact of forest disturbances and the ecosystem dynamics during the process of regeneration in the absence of any management 44 years after the event. In addition, the impact of salvage logging after windthrow remains unknown, especially on long-term responses. In this study, comparisons were made between the “unsalvaged” and “salvaged” post-storm management scenarios. The study was conducted in Slitere Natural Park in the Northwest part of Latvia, where large-scale windthrow occurred on November 2, 1969. The three-parameter Weibull function was used to describe the diameter distribution of Norway spruce (Picea abies (L.) Karst.) stands formed after large-scale wind storm in two site types (on fertile mineral soils: with normal moisture regime (fresh)—Oxalidosa—and with periodic excess water (wet)—Myrtilloso-sphagnosa) and where salvage logging was or was not carried out (management scenarios). The naturally regenerated stands remained Norway spruce dominated and were independent of the post-storm management scenarios; still, they were significantly affected by a forest type. The three-parameter Weibull distribution function suited well to actual diameter distributions of the sample plots. Diameter distributions significantly differed between the forest types: In Myrtilloso-sphagnosa (wet) forest stands, it was a negative exponential and in Oxalidosa (fresh) stands unimodal and positively skewed. We did not detect distribution differences caused by salvage after a large-scale disturbance, indicating that other factors (like ecological importance of deadwood, a risk of insect outbreaks to neighboring areas, etc.) need to be considered, when deciding on the post-storm management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Data are mean ± standard deviation.

References

  • Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in north-western Europe. Ann Bot Fenn 5:169–211

    Google Scholar 

  • Angelstam P (1996) The ghost of forest past – natural disturbance regimes as a basis for reconstruction of biologically diverse forests in Europe. In: DeGraaf RM, Miller RI (eds) Conservation of fauna diversity in forested landscapes. Chapman & Hall, London, pp 287–337

    Chapter  Google Scholar 

  • Angelstam P, Kuuluvainen T (2004) Boreal forest disturbance regimes, successional dynamics and landscape structures - a European perspective. Ecol Bull 51:117–136

    Google Scholar 

  • Bāders E, Puriņa L, Lībiete Z, Nartišs M, Jansons Ā (2014) Fragmentācijas ilgtermiņa dinamika meža ainavā bez cilvēka saimnieciskās darbības ietekmes. Mežzinātne 28:91–107

    Google Scholar 

  • Bailey RL, Dell TR (1973) Quantifying diameter distribution with the Weibull-function. For Sci 19:97–104. https://doi.org/10.1093/forestscience/19.2.97

    Article  Google Scholar 

  • Becker T (1999) Zunehmender Borkenkäferbefall in zwei fichtenreichen Bannwäldern Baden-Württembergs. In: Wulf A, Berendes KH (eds) Forstschutzprobleme in Nationalparken und Naturschutzgebieten. Mitt Biol Bundesanst Land- Forstw, Berlin-Dahlem, pp 80–100

    Google Scholar 

  • Bottero A, Garbarino M, Long JN, Motta R (2013) The interacting ecological effects of large-scale disturbances and salvage logging on montane spruce forest regeneration in the western European Alps. For Ecol Manag 292:19–28. https://doi.org/10.1016/j.foreco.2012.12.021

    Article  Google Scholar 

  • Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, Netherlands

    Book  Google Scholar 

  • Buss K (1997) Forest ecosystem classification in Latvia. Proc Latvian Acad Sci B 51:204–218

    Google Scholar 

  • Clinton B, Baker C (2000) Catastrophic windthrow in the southern Appalachians: characteristics of pits and mounds an initial vegetation response. For Ecol Manag 126:51–60. https://doi.org/10.1016/S0378-1127(99)00082-1

    Article  Google Scholar 

  • Coomes D, Duncan R, Allen R, Truscott J (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol Lett 6:980–989. https://doi.org/10.1046/j.1461-0248.2003.00520.x

    Article  Google Scholar 

  • Cudmore TJ, Bjorklund N, Carroll AL, Lindgren BS (2010) Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in native host tree populations. J Appl Ecol 47:1036–1043. https://doi.org/10.1111/j.1365-2664.2010.01848.x

    Article  Google Scholar 

  • Evans JW, Johnson RA, Green DW (1989) Two- and three-parameter Weibull goodness-of-fit tests. U.S. Department of Agriculture, Madison, United States of America

  • Everham EM, Brokaw NVL (1996) Forest damage and recover from catastrophic wind. Bot Rev 62(2):113–118

    Article  Google Scholar 

  • Fischer A, Fischer HS (2012) Individual-based analysis of tree establishment and forest stand development within 25 years after wind throw. Eur J For Res 131:493–501. https://doi.org/10.1007/s10342-011-0524-2

    Article  Google Scholar 

  • Fischer A, Marshall P, Camp A (2013) Disturbances in deciduous temperate forest ecosystems of the northern hemisphere: their effects on both recent and future forest development. Biodivers Conserv 22:1863–1893. https://doi.org/10.1007/s10531-013-0525-1

    Article  Google Scholar 

  • Galiatsatos N, Donoghue DNM, Philip G (2005) An evaluation of the stereoscopic capabilities of CORONA declassified spy satellite image data. In: 25th EARSeL symposium, workshop on 3D remote sensing, Porto, Portugal, vol 1, No. 8

  • Gardiner B, Blennow K, Carnus JM, Fleischer P, Ingemarson F, Landmann G, Lindner M, Marzano M, Nicoll B, Orazio C, Peyron JL, Reviron MP, Schelhaas M, Schuck A, Spielmann M, Usbeck T (2010) Destructive storms in european forests: past and forthcoming impacts. final report to european commission—DG environment EFIATLANTIC—European Forest Institute: Joensuu, Finland

  • Gauthier S, Vaillancourt MA, Kneeshaw D, Drapeau P, De Grandpré L, Claveau Y, Paré D (2009) Forest ecosystem management, origins and foundations. In: Gauthier S, Vaillancourt MA, Leduc A, De Grandpre L, Kneeshaw DD, Morin H, Drapeau P, Bergeron Y (eds) Ecosystem management in the boreal forest. Presses de l’Université du Québec, Montreal, Canada, pp 13–38

  • Harvey BD, Leduc A, Gauthier S, Bergeron Y (2002) Stand-landscape integration in natural disturbance-based management of the southern boreal forest. For Ecol Manag 155:369–385. https://doi.org/10.1016/S0378-1127(01)00573-4

    Article  Google Scholar 

  • Jõgiste K, Korjus H, Stanturf JA, Frelich LE, Baders E, Donis J, Jansons A, Kangur A, Köster K, Laarmann D (2017) Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management. Ecosphere 8:1–20. https://doi.org/10.1002/ecs2.1706

    Article  Google Scholar 

  • Ķēniņa L, Elferts D, Bāders E, Jansons Ā (2018) Carbon pools in a hemiboreal over-mature norway spruce stands. Forests 9(7):435. https://doi.org/10.3390/f9070435

    Article  Google Scholar 

  • Koivula M, Kuuluvainen T, Hallman E, Kouki J, Siitonen J, Valkonen S (2014) Forest management inspired by natural disturbance dynamics (DISTDYN)—a long-term research and development project in Finland. Scand J For Res 29(6):579–592. https://doi.org/10.1080/02827581.2014.938110

    Article  Google Scholar 

  • Köster K, Jõgiste K, Tukia H, Niklasson M, Möls T (2005) Variation and ecological characteristics of coarse woody debris in Lahemaa and Karula National Parks, Estonia. Scand J For Res 20(6):102–111. https://doi.org/10.1080/14004080510042137

    Article  Google Scholar 

  • Kuuluvainen T (2002) Natural variability of forests as a reference for restoring and managing biological diversity in boreal Fennoscandia. Silva Fenn 36:97–125. https://doi.org/10.14214/sf.552

    Article  Google Scholar 

  • Kuuluvainen T, Aakala T (2011) Natural forest dynamics in boreal Fennoscandia: a review and classification. Silva Fenn 45:823–841. https://doi.org/10.14214/sf.73

    Article  Google Scholar 

  • Lizuma L, Kļaviņš M, Briede A, Rodinovs V (2007) Long-term changes of air temperature in Latvia. In: Kļaviņš M (ed) Climate change in Latvia. UL Publishing House, Riga, Latvia, pp 11–20

  • Lorimer C, Krug A (1983) Diameter distributions in even-aged stands of shade-tolerant and midtolerant tree species. Am Midl Nat 109:331–345. https://doi.org/10.2307/2425414

    Article  Google Scholar 

  • Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York

    Google Scholar 

  • Panayotov M, Kulakowski D, Dos Santos LL, Bebi P (2011) Wind disturbances shape old Norway spruce-dominated forest in Bulgaria. For Ecol Manag 262:470–481. https://doi.org/10.1016/j.foreco.2011.04.013

    Article  Google Scholar 

  • Peterson CJ, Leach AD (2008) Limited salvage logging effects on forest regeneration after moderate-severity windthrow. Ecol Appl 18:407–420. https://doi.org/10.1890/07-0603.1

    Article  PubMed  Google Scholar 

  • Peterson CJ, Pickett STA (1995) Forest reorganization: a case study in an old-growth forest catastrophic blowdown. Ecology 76:763–774. https://doi.org/10.2307/1939342

    Article  Google Scholar 

  • Podlaski R (2017) Forest modelling: the gamma shape mixture model and simulation of tree diameter distributions. Ann Forest Sci 74:29. https://doi.org/10.1007/s13595-017-0629-y

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing R foundation for statistical computing, Vienna, Austria, https://wwwR-projectorg. Accessed 10 January 2019

  • Rennolls K, Geary DN, Rollinson TJD (1985) Characterizing diameter distributions by the use of the weibull distribution. Forestry 58:57–66. https://doi.org/10.1093/forestry/58.1.57

    Article  Google Scholar 

  • Rouvinen S, Kuuluvainen T (2005) Tree diameter distributions in natural and managed old Pinus sylvestris-dominated forests. For Ecol Manag 208:45–61. https://doi.org/10.1016/j.foreco.2004.11.021

    Article  Google Scholar 

  • Sabatini FM, Burrascano S, Keeton WS, Levers C, Lindner M, Pötzschner F, Verkerk PJ, Bauhus J, Buchwald E, Chaskovsky O, Debaive N, Horváth F, Garbarino M, Grigoriadis N, Lombardi F, Duarte IM, Meyer P, Midteng R, Mikac S, Mikolas M, Motta R, Mozgeris G, Nunes L, Panayotov M, Ódor P, Ruete A, Simovski B, Stillhard J, Svoboda M, Szwagrzyk J, Tikkanen O-P, Volosyanchuk R, Vrska T, Zlatanov TM, Kuemmerle T (2018) Where are Europe’s last primary forests? Divers Distrib 24(10):1–14. https://doi.org/10.1111/ddi.12778

    Article  Google Scholar 

  • Schreuder HT, Swank WT (1974) Coniferous stands characterized with the Weibull distributions. Can J For Res 4:518–523. https://doi.org/10.1139/x74-075

    Article  Google Scholar 

  • Schweiger J, Sterba H (1997) A model describing natural regeneration recruitment of Norway spruce (Picea abies (L) Karst) in Austria. For Ecol Manag 97:107–118. https://doi.org/10.1016/S0378-1127(97)00092-3

    Article  Google Scholar 

  • Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810. https://doi.org/10.1038/nclimate2318

    Article  CAS  Google Scholar 

  • Shorohova E, Fedorchuk V, Kuznetsova M, Shvedova O (2008) Wind-induced successional changes in pristine boreal Picea abies forest stands: evidence from long-term permanent plot records. Forestry 81:335–359. https://doi.org/10.1093/forestry/cpn030

    Article  Google Scholar 

  • Skudra P, Dreimanis A (1973) Mežsaimniecības pamati (Fundamentals of forestry). Zvaigzne, Rīga

    Google Scholar 

  • Stöcker G (2002) Analysis and comparison of stand structures in natural spruce forests with Lorenz functions and Gini coefficients. Aust J For Sci 11:12–39. https://doi.org/10.17221/102/2014-JFS

    Article  Google Scholar 

  • Svensson JS, Jeglum JK (2000) Primary succession and dynamics of Norway spruce coastal forests on land-uplift ground moraine. Sveriges lantbruksuniversitet, Studia Forestalia Suecica, Sweden, Uppsala

  • Svoboda M, Fraver S, Janda P, Bače R, Zenáhlíková J (2010) Natural development and regeneration of a Central European montane spruce forest. For Ecol Manag 260:707–714. https://doi.org/10.1016/j.foreco.2010.05.027

    Article  Google Scholar 

  • Syrjanen K, Kalliola R, Puolasmaa A, Mattson J (1994) Landscape structure and forest dynamics in subcontinental Russian European taiga. Ann Zool Fenn 31:19–34

    Google Scholar 

  • Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manag 135:155–167. https://doi.org/10.1016/S0378-1127(00)00307-8

    Article  Google Scholar 

  • Vodde F, Jõgiste K, Gruson L, Ilisson T, Köster K, Stanturf JA (2010) Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species. J Forest Res-JPN 15:55–64. https://doi.org/10.1007/s10310-009-0156-2

    Article  CAS  Google Scholar 

  • Vodde F, Jõgiste K, Kubota Y, Kuuluvainen T, Köster K, Lukjanova A, Metslaid M, Yoshida T (2011) The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest. J For Res 16:155–167. https://doi.org/10.1007/s10310-011-0273-6

    Article  Google Scholar 

  • Vodde F, Jõgiste K, Engelhart J, Frelich LE, Moser WK, Sims A, Metslaid M (2015) Impact of wind-induced microsites and disturbance severity on tree regeneration patterns: results from the first post-storm decade. For Ecol Manag 348:174–185. https://doi.org/10.1016/j.foreco.2015.03.052

    Article  Google Scholar 

  • Winter S (2012) Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry 85(2):293–304. https://doi.org/10.1093/forestry/cps004

    Article  Google Scholar 

  • Wollenweber GC, Wollenweber FG (1995) Forest wind damage risk assessment for environmental impact studies. In: Courts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 404–423

    Chapter  Google Scholar 

  • Zhang LJ, Gove JH, Liu C, Leak WB (2001) A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands. Can J For Res 31:1654–1659. https://doi.org/10.1139/x01-086

    Article  Google Scholar 

  • Zucchini W, Schmidt M, von Gadow K (2001) A model for the diameter–height distribution in an uneven-aged beech forest and a method to assess the fit of such models. Silva Fenn 35:169–183. https://doi.org/10.14214/sf.594

    Article  Google Scholar 

Download references

Acknowledgments

We are most grateful to Alan Ek for comments and suggestions on the early version of the manuscript. We also thank Dr. W. Keith Moser for revising the English version.

Funding

The study was carried out within the framework of the project “Support for the Implementation of Post-doctoral Research, Agreement No. 1.1.1.2/16/I/001” funded by the European Regional Development Fund, Contract No. 1.1.1.2/VIAA/1/16/120. The study was supported by the Institutional Research Funding IUT21-4 from the Estonian Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endijs Bāders.

Additional information

Communicated by Eric R. Labelle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bāders, E., Silamiķele, I., Polyachenko, O. et al. Long-term effects of salvage logging on stand composition in seminatural spruce forests. Eur J Forest Res 139, 17–27 (2020). https://doi.org/10.1007/s10342-019-01249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-019-01249-4

Keywords

Navigation