Skip to main content
Log in

Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Light detection and ranging (LIDAR) is a remote sensing technique that uses light, often using pulses from a laser to measure the distance to a target. Both terrestrial- and airborne-based LIDAR techniques have been frequently used to map landslides. Airborne LIDAR has the advantage of identifying large scarps of landslides covered by tree canopies and is widely applied in identifying historical and current active landslides hidden in forested areas. However, because landslides naturally have relatively small vertical surface deformation in the foot area, it is practically difficult to identify the margins of landslide foot area with the limited spatial resolution (few decimeters) of airborne LIDAR. Alternatively, ground-based LIDAR can achieve resolution of several centimeters and also has the advantages of being portable, repeatable, and less costly. Thus, ground-based LIDAR can be used to identify small deformations in landslide foot areas by differencing repeated terrestrial laser scanning surveys. This study demonstrates a method of identifying the superficial boundaries as well as the bottom boundary (sliding plane) of an active landslide in National Rainforest Park, Puerto Rico, USA, using the combination of ground-based and airborne LIDAR data. The method of combining terrestrial and airborne LIDAR data can be used to study landslides in other regions. This study also indicates that intensity and density of laser point clouds are remarkably useful in identifying superficial boundaries of landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Abellan A, Vilaplana JM, Martinez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Nuria (Eastern Pyrenees, Spain). Eng Geol 88:136–148. doi:10.1016/j.enggeo.2006.09.012

    Article  Google Scholar 

  • Abellan A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to rockfall event. Nat Hazards Earth Syst Sci 9:365–372. doi:10.5194/nhess-9-365-2009

    Article  Google Scholar 

  • Adams JC, Chandler JH (2002) Evaluation of LIDAR and medium scale photogrammetry for detecting soft-cliff coastal change. Photogramm Record 17(99):405–418

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LIDAR. Nat Hazards Earth Syst Sci 7:637–650. doi:10.5194/nhess-7-637-2007

    Article  Google Scholar 

  • Bevis M, Hudnut K, Sanchez R, Toth C, Grejner-Brzezinska D, Kendrick E, Caccamise D, Raleigh D, Zhou H, Shan S, Shindle W, Yong A, Harvey J, Borsa A, Ayoub F, Elliot B, Shrestha R, Carter B, Sartori M, Phillips D, Coloma F, Stark K (2005) The B4Project: scanning the San Andreas and San Jacinto fault zones. Eos Trans AGU 86 (52) Fall Meet Suppl, Abstract H34B-01

  • Booth AM, Roering JJ, Perron JT (2009) Automated landslide mapping using spectral analysis and high resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology 109:132–147. doi:10.1016/j.geomorph.2009.02.027

    Article  Google Scholar 

  • Bowen ZH, Waltermire RG (2002) Evaluation of light detection and ranging (LIDAR) for measuring river corridor topography. J Am Water Resour Assoc 38(1):33–41

    Article  Google Scholar 

  • Carter WE, Shrestha R, Tuell D, Bloomquist D, Sartori M (2001) Airborne laser swath mapping shines new light on earth’s topography. Eos Trans Am Geophys Union 82(46):549–555

    Article  Google Scholar 

  • Carter WE, Shrestha R, Slatton KC (2007) Geodetic laser scanning. Phys Today, December, 41-42

  • Corsini A, Cervi F, Daehne A, Ronchetti F (2009) Coupling geomorphic field observation and LIDAR derivatives to map complex landslides. In: Malet JP, Remaître A, Bogaard T (eds) Landslides processes—from geomorphologic mapping to dynamic modelling. Proceedings of the landslide processes conference. CERG Editions, Strasbourg, pp 15–18, ISBN 2-9518317-1-4

    Google Scholar 

  • Delano HL, Braun DD (2007) PAMAP LIDAR-based elevation data: a new tool for geologic and hazard mapping in Pennsylvania. Geol Soc Am Abstr Programs 39(6):167

    Google Scholar 

  • Derron MH, Jaboyedoff M (2010) Preface to the special issue. In: LIDAR and DEM techniques for landslides monitoring and characterization. Nat Hazards Earth Syst Sci 10:1877–1879

  • Donoghue DNM, Watt PJ, Cox NJ, Wilson J (2007) Remote sensing of species mixtures in conifer plantations using LIDAR height and intensity data. Remote Sens Environ 110(4):509–522

    Article  Google Scholar 

  • Dunning S, Massey C, Rosser N (2009) Structural and geomorphological features of landslides in the Bhutan Himalaya derived from terrestrial laser scanning. Geomorphology 103:17–29. doi:10.1016/j.geomorph.2008.04.013

    Article  Google Scholar 

  • Falls JN, Wills CJ, Hardin BC (2004) Utility of LIDAR survey for landslide mapping of the Highway 299 corridor, Humboldt County, California. Geol Soc Am Abstr Programs 36(5):331

    Google Scholar 

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2012) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides. doi:10.1007/s10346-012-0329-5

    Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2005) Analysis of LIDAR derived topographic information characterizing and differentiating landslide morphology and activity. Geomorphology 73(1–2):131–148. doi:10.1016/j.geomorph.2005.07.006

    Google Scholar 

  • Glenn NF, Streuker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LIDAR derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • Habib A (2008) Accuracy, quality assurance and quality control of LIDAR data, Chap 9. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press, Boca Raton, pp. 269–294

  • Hasegawa H (2006) Evaluations of LIDAR reflectance amplitude sensitivity towards land cover conditions. Bull Geogr Surv Inst 53:43–50

    Google Scholar 

  • Haugerud RA, Harding DJ, Johnson SY, Harless JL, Weaver CS, Sherrod BL (2003) High-resolution LIDAR topography of the Puget Lowland, Washington—a Bonanza for earth science. GSA Today 13:4–10

    Article  Google Scholar 

  • Heritage GL, Large ARG (2009) Fundamentals of laser scanning. In: Heritage GL, Large ARG (eds) Laser scanning for the environmental sciences. Wiley-Blackwell, Chichester

    Chapter  Google Scholar 

  • Hodgson ME, Bresnahan P (2004) Accuracy of airborne LIDAR-derived elevation: empirical assessment and error budget. Photogramm Eng Remote Sens 70(3):331–339

    Google Scholar 

  • Hodgson ME, Jensen JR, Schmidt L, Schill S, Davis B (2003) An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS level 1 and level 2 DEMs. Remote Sens Environ 84:295–308

    Article  Google Scholar 

  • Jaboyedoff M, Pedrazzini A, Horton P, Loye A, Surace I (2008) Preliminary slope mass movements susceptibility mapping using LIDAR DEM. In: Proceedings of 61th Canadian geotechnical conference, pp. 419–426

  • Jaboyedoff M, Oppikofer T, Locat A, Locat J, Turmel D, Robitaille D, Demers D, Locat P (2009) Use of ground-based LIDAR for the analysis of retrogressive landslides in sensitive clay and of rotational landslides in river banks. Can Geotech J 46:1379–1390. doi:10.1139/T09-073

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28. doi:10.1007/s11069-010-9634-2

    Article  Google Scholar 

  • Kaasalainen S, Ahokas E, Hyyppa J, Suomalainen J (2005) Study of surface brightness from backscattered laser intensity: calibration of laser data. Remote Sens Lett 2(3):255–259

    Article  Google Scholar 

  • Kasperski J, Delacourt C, Allemand P, Potherat P, Jaud M, Varrel E (2010) Application of a terrestrial laser scanner (TLS) to the study of the Séchilienne Landslide (Isère, France). Remote Sens 2:2785–2802. doi:10.3390/rs122785

    Article  Google Scholar 

  • Mazzarini F, Pareschi M, Favalli M, Isola I, Tarquini S, Boschi E (2007) Lava flow identification and aging by means of lidar intensity: Mount Etna case. J Geophys Res 112(B2): doi:10.1029/2005JB004166. ISSN: 0148-0227

    Google Scholar 

  • Razak KA, Straatsma MW, van Westen CJ, Malet JP, de Jong SM (2011) Airborne laser scanning of forested landslides characterization: terrain model quality and visualization. Geomorphology 126:186–200. doi:10.1016/j.geomorph.2010.11.003

    Article  Google Scholar 

  • Shan J, Toth K (2008) Topographic laser ranging and scanning: principles and processing. CRC Press, London

    Book  Google Scholar 

  • Shrestha RL, Carter WE, Lee M, Finer P, Sartori M (1999) Airborne laser swath mapping: accuracy assessment for surveying and mapping applications. J Am Congr Surv Mapp 59(2):83–94

    Google Scholar 

  • Shrestha RL, Carter WE, Slatton KC, Dietrich W (2007) “Research quality” airborne laser swath mapping: the defining factors, Ver.1.2, white paper. Available at http://ncalm.berkeley.edu/reports/NCALM_WhitePaper_v1.2.pdf

  • Slatton KC, Carter WE, Shrestha RL, Dietrich W (2007) Airborne laser swath mapping: achieving the resolution and accuracy required for geosurficial research. Geophys Res Lett 34:L23S10. doi:10.1029/2007GL031939

    Article  Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446. doi:10.1080/01431160601024234

    Article  Google Scholar 

  • Teza G, Pesci A, Genevois R, Galgaro A (2008) Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 97:424–437. doi:10.1016/j.geomorph.2007.09.003

    Article  Google Scholar 

  • Travelletti J, Oppikofer T, Delacourt C, Malet J, Jaboyedoff M (2009) Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). Int Arch Photogramm Remote Sens 37(B5):485–490

    Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Moeyersons J, Nyssen J, Van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Process Landforms 32(5):754–769. doi:10.1002/esp.1417

    Article  Google Scholar 

  • Wang G, Soler T (2012) OPUS for horizontal subcentimeter-accuracy landslide monitoring: case study in the Puerto Rico and virgin islands region. J Surv Eng 138(3):143–153. doi:10.1061/(ASCE)SU.1943-5428.0000079

    Article  Google Scholar 

  • Wang G, Phillips D, Joyce J, Rivera FO (2011) The integration of TLS and continuous GPS to study landslide deformation: a case study in Puerto Rico. J Geodetic Sci 1(1):25–34. doi:10.2478/v10156-010-0004-5

    Google Scholar 

  • Wehr A, Lohr U (1999) Airborne laser scanning—an introduction and overview. ISPRS J Photogramm Remote Sens 54:68–82. doi:10.1016/S0924-2716(99)00011-8

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72:441

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

  • Wooten RM, Latham RS, Witt AC, Douglas TJ, Gillon KA, Fuemmeler SJ, Bauer JB, Nickerson JG, Reid JC (2007) Landslide hazard mapping in North Carolina—geology in the interest of public safety and informed decision making. Geol Soc Am Abstr Programs 39(2):76

    Google Scholar 

Download references

Acknowledgments

The airborne LIDAR data were collected by NCALM engineers Michael Sartori, Abhinav Singhania, and Juan Fernandez. We appreciate their efforts in the field as well as their assistance in airborne LIDAR data processing. Graduate students Felix O. Rivera and Leila Joyce and undergraduates Arlenys Ramirez Rivera, Fernando Martinez, and Francis Hernández at the University of Puerto Rico Mayaguez campus assisted in field surveys. We appreciate their hard work in the field. This study was funded by a NSF CAREER Award (EAR-1229278), and the TLS equipment was provided by UNAVCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoquan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Joyce, J., Phillips, D. et al. Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 10, 503–513 (2013). https://doi.org/10.1007/s10346-013-0400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0400-x

Keywords

Navigation