Skip to main content
Log in

Site scale modeling of slow-moving landslides, a 3D viscoplastic finite element modeling approach

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper presents an advanced 3D numerical methodology to reproduce the kinematics of slow active landslides, more precisely, to reproduce the nearly constant strain rate (secondary creep) and the acceleration/deceleration of the moving mass due to hydrological changes. For this purpose, finite element analyses are performed in a large area covering a long time-span (12 years), in order to exhibit different interacting slope movements. First, we perform a stability analysis using the shear strength reduction (SSR) technique with a Mohr-Coulomb failure criteria. It is done in order to compute factors of safety (FS) and to identify two different scenarios, the first one being stable (FS > 1) and the second one being unstable (FS < 1). In the studied test case, the Portalet landslide (Central Spanish Pyrenees), the first scenario corresponds to an initial stable configuration of the slope and the second one to an unstable excavated configuration. Second, taking the first scenario as an initial condition, a time-dependent analysis is performed using a coupled formulation to model solid skeleton and pore fluids interaction, and a simplified ground water model that takes into account daily rainfall intensity. In this case, a viscoplastic constitutive model based on Perzyna’s theory is applied to reproduce soil viscous behavior and the delayed creep deformation due to the excavation. The fluidity parameter is calibrated to reproduce displacements measured by the monitoring systems. Our results demonstrate that 3D analyses are preferable to 2D ones for reproducing in a more realistic way the slide behavior. After calibration, the proposed model is able to simulate successfully short- and medium-term predictions during stages of primary and secondary creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abbo A, Sloan S (1995) A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Comput Struct 54:427–441

    Article  Google Scholar 

  • ARCO TECNOS SA (2010) Sondeos en alrededores de la estación de Formigal (Huesca). Technical Report for Instituto Geológico y Minero de España. Control Remoto SudoedorisProject (in Spanish)

  • Bixel F, Muller J, and Roger P (1985) Carte géologique du Pic du Midi d’Ossau et haut bassin du río Gállego, 1:25.000

  • Chen Z, Wang J, Wang Y, Yin J-H, Haberfield C (2001) A three-dimensional slope stability analysis method using the upper bound theorem part II: numerical approaches, applications and extensions. Int J Rock Mech Min Sci 38:379–397

    Article  Google Scholar 

  • CIMNE G (2009) The Personal Pre and Post Processor, International Center for Numerical Methods in Engineering, Barcelona, 2009

  • Conte E, Donato A, Troncone A (2014) A finite element approach for the analysis of active slow-moving landslides. Landslides 11:723–731

    Article  Google Scholar 

  • Conte E, Donato A, Troncone A (2016) A simplified method for predicting rainfall-induced mobility of active landslides. Landslides 1-11:2016

    Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96

    Article  Google Scholar 

  • Cruden DM and Varnes DJ (1996) Landslides: investigation and mitigation. Chapter 3—landslide types and processes, Transportation Research Board special report, 1996

  • Dawson E, Roth W, Drescher A (1999) Slope stability analysis by strength reduction. Geotechnique 49:835–840

    Article  Google Scholar 

  • De Novellis V,  Castaldo R, Lollino P, Manunta M, Tizzani P, (2016) Advanced three-dimensional finite element modeling of a slow landslide through the exploitation of DInSAR measurements and in situ surveys. Remote Sens 8(8):670

  • Duncan JM (1996) State of the art: limit equilibrium and finite-element analysis of slopes. J Geotech Eng 122:577–596

    Article  Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272

    Article  Google Scholar 

  • Fernández-Merodo JA (2001) Une approche à la modélisation des glissements et des effondrements de terrains: Initiation et propagation. PhD, École Centrale Paris

  • Fernández-Merodo J, Herrera G, Mira P, Mulas J, Pastor M, Noferini L, Me-catti D, and Luzi G (2008) Modelling the Portalet landslide mobility (Formigal, Spain). International Environmental Modelling and Software Society (iEMSs), 2008

  • Fernández-Merodo JA, García-Davalillo JC, Herrera G, Mira P, Pastor M (2014) 2D viscoplastic finite element modelling of slow landslides: the Portalet case study (Spain). Landslides 11:29–42

    Article  Google Scholar 

  • François B, Tacher L, Bonnard C, Laloui L, Triguero V (2007) Numerical modelling of the hydrogeological and geomechanical behaviour of a large slope movement: the Triesenberg landslide (Liechtenstein). Can Geotech J 44:840–857

    Article  Google Scholar 

  • García-Davalillo JC, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11:225–246

    Article  Google Scholar 

  • García-Ruiz J, Chueca J, Julián A (2004) Los movimientos en masa del Alto Gállego. Geografía Física de Aragón Aspectos generales y temáticos 142-152:2004

    Google Scholar 

  • Griffiths D, Lane P (1999) Slope stability analysis by finite elements. Geotechnique 49:387–403

    Article  Google Scholar 

  • Herrera G, Davalillo J, Mulas J, Cooksley G, Monserrat O, Pancioli V (2009a) Mapping and monitoring geomorphological processes in mountainous areas using PSI data: Central Pyrenees case study. Nat Hazards Earth Syst Sci 9:1587–1598

    Article  Google Scholar 

  • Herrera G, Fernández-Merodo J, Mulas J, Pastor M, Luzi G, Monserrat O (2009b) A landslide forecasting model using ground based SAR data: the Portalet case study. Eng Geol 105:220–230

    Article  Google Scholar 

  • Herrera G, Notti D, García-Davalillo JC, Mora O, Cooksley G, Sánchez M, Arnaud A, Crosetto M (2011) Analysis with C-and X-band satellite SAR data of the Portalet landslide area. Landslides 8:195–206

    Article  Google Scholar 

  • Herrera G, Gutiérrez F, García-Davalillo J, Guerrero J, Notti D, Galve J, Fernández-Merodo J, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43

    Article  Google Scholar 

  • Herrera G, Fernández-Merodo J, Béjar-Pizarro M, Allasia P, Lollino P, Lollino G, Guzzetti F, Álvarez-Fernández M, Manconi A, Duro J, Sánchez C, Iglesias R (2017) The differential slow moving dynamic of a complex landslide: multi-sensor monitoring. World Landslide Forum, Ljubljana

    Google Scholar 

  • IGN (2014) Modelo digital del terreno, Hoja n° 0145, Instituto Geográfico Nacional

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910

    Article  Google Scholar 

  • Leroueil S, Locat J, Vaunat J, Picarelli L, Lee H, and Faure R (1996) Geotechnical characterization of slope movements:53–74

  • Leshchinsky D, Huang C-C (1992) Generalized three-dimensional slope-stability analysis. J Geotech Eng 118:1748–1764

    Article  Google Scholar 

  • Mira P (2002) Análisis por Elementos Finitos de Problemas de Rotura de Geomateriales. PhD, ETS de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid

  • Notti D, Davalillo J, Herrera G, Mora O (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875

    Article  Google Scholar 

  • Ortiz M, Popov EP (1985) Accuracy and stability of integration algorithms for elastoplastic constitutive relations. Int J Numer Methods Eng 21:1561–1576

    Article  Google Scholar 

  • Oviedo-University (2011) Método y sistema para la realización de ensayos in situ y caracterización de terrenos heterogéneos o macizos rocosos intensamente fracturados. Spanish patent no ES-2351498-A1 (in Spanish). http://www.oepm.es/pdf/ES/ 0000/000/02/35/14/ES-2351498_A1.pdf. Accessed 27 Sept 2012

  • Pastor M, Merodo JF, Herreros M, Mira P, González E, Haddad B, Quecedo M, Tonni L, Drempetic V (2008) Mathematical, constitutive and numerical modelling of catastrophic landslides and related phenomena. Rock Mech Rock Eng 41:85

    Article  Google Scholar 

  • Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377

    Article  Google Scholar 

  • Quecedo M, Pastor M, Herreros M, Fernández Merodo J (2004) Numerical modelling of the propagation of fast landslides using the finite element method. Int J Numer Methods Eng 59:755–794

    Article  Google Scholar 

  • Shen J, Karakus M (2013) Three-dimensional numerical analysis for rock slope stability using shear strength reduction method. Can Geotech J 51:164–172

    Article  Google Scholar 

  • Simo JC, Taylor RL (1985) Consistent tangent operators for rate-independent elastoplasticity. Comput Methods Appl Mech Eng 48:101–118

    Article  Google Scholar 

  • SITAR (2004) Digital elevation model, 1:5000. Instituto Geográfico de Aragón

  • Stark TD, Eid HT (1998) Performance of three-dimensional slope stability methods in practice. J Geotech Geoenviron 124:1049–1060

    Article  Google Scholar 

  • Tacher L, Bonnard C, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2:3–14

    Article  Google Scholar 

  • Tschuchnigg F, Schweiger H, Sloan S (2015) Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: numerical studies considering non-associated plasticity. Comput Geotech 70:169–177

    Article  Google Scholar 

  • Van Asch TJ, Van Genuchten P (1990) A comparison between theoretical and measured creep profiles of landslides. Geomorphology 3:45–55

    Article  Google Scholar 

  • Wei W, Cheng Y, Li L (2009) Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Comput Geotech 36:70–80

    Article  Google Scholar 

  • Zhang Y, Chen G, Zheng L, Li Y, Zhuang X (2013) Effects of geometries on three-dimensional slope stability. Can Geotech J 50:233–249

    Article  Google Scholar 

  • Zheng H (2012) A three-dimensional rigorous method for stability analysis of landslides. Eng Geol 145:30–40

    Article  Google Scholar 

  • Zienkiewicz O, Humpheson C, Lewis R (1975) Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25:671–689

    Article  Google Scholar 

  • Zienkiewicz  OC, Chan A, Pastor M, Schrefler B,  Shiomi T (1999) Computational geomechanics. Wiley, Chichester

Download references

Acknowledgements

This research has been supported by the Spanish Ministry of Economy and Competitiveness grants ESP2013-47780-557 C2-1-R and ESP2013-47780-557 C2-2-R. It is a contribution to the Moncloa Campus of International Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bru, G., Fernández-Merodo, J., García-Davalillo, J. et al. Site scale modeling of slow-moving landslides, a 3D viscoplastic finite element modeling approach. Landslides 15, 257–272 (2018). https://doi.org/10.1007/s10346-017-0867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0867-y

Keywords

Navigation