Skip to main content
Log in

Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Landslide hazard mapping is essential for disaster reduction and mitigation. The hazard map produced by the spatiotemporal probability analysis is usually static with false-negative and false-positive errors due to limited data resolution. Here we propose a new method to obtain dynamic landslide hazard maps over the Wushan section of the Three Gorges Reservoir Area by introducing the ground deformation measured by the spaceborne Copernicus Sentinel-1 synthetic aperture radar (SAR) imagery collected from 9/30/2016 to 9/13/2017. We first determine the spatial probability of landslide occurrence predicted by the support vector machine algorithm. We also conducted the statistical analysis on the temporal probability of landslide occurrence under various rainfall conditions (0, 0–50, 50–100, and > 100 mm for the antecedent 5-day total). We initialize a preliminary landslide hazard map by combining the spatial and temporal landslide probabilities. Meanwhile, the ground deformation velocities during the representative dry and wet seasons can be extracted from multi-temporal interferometric SAR (MT-InSAR). Thereafter, the landslide hazard map can be finalized by an empirical assessment matrix considering both the preliminary landslide hazard map and deformation velocities. Our results demonstrate that false-negative and false-positive errors in the landslide hazard map can be effectively reduced with the assistance of the deformation information. Our proposed method can be used to assess the dynamic landslide hazard at higher accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed B (2021) The root causes of landslide vulnerability in Bangladesh. Landslides 18(5):1707–1720

    Article  Google Scholar 

  • Bai S, Wang J, Lü G, Zhou P, Hou S, Xu S (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area. China Geomorphology 115(1–2):23–31

    Article  Google Scholar 

  • Barra A, Solari L, Béjar-Pizarro M, Monserrat O, Bianchini S, Herrera G, Crosetto M, Sarro R, González-Alonso E, Mateos R, Ligüerzana S (2017) A methodology to detect and update active deformation areas based on Sentinel-1 SAR images. Remote Sensing 9:1002

    Article  Google Scholar 

  • Bekaert DP, Handwerger AL, Agram P, Kirschbaum DB (2020) InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: an application to Nepal. Remote Sens Environ 249:111983

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  • Bontemps N, Lacroix P, Larose E, Jara J, Taipe E (2020) Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat Commun 11(1):1–10

    Article  Google Scholar 

  • Bordoni M, Vivaldi V, Lucchelli L, Ciabatta L, Brocca, L, Galve JP, Meisina C (2020) Development of a data-driven model for spatial and temporal shallow landslide probability of occurrence at catchment scale. Landslides, 1–21

  • Bui DT, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical problems in Engineering, 2012

  • Cao Y, Yin K, Alexander DE, Zhou C (2016) Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides 13(4):725–736

    Article  Google Scholar 

  • Cao Y, Yin K, Zhou C, Ahmed B (2020) Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis. Sensors 20(3):845

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazard 13(11):2815–2831

    Article  Google Scholar 

  • Catani F, Segoni S (2021) Prediction and forecasting of mass-movements, Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2021, ISBN 9780124095489, https://doi.org/10.1016/B978-0-12-818234-5.00099-7

  • Chen T, Zhu L, Niu RQ, Trinder CJ, Peng L, Lei T (2020) Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J Mt Sci 17(3):670–685

    Article  Google Scholar 

  • Chen W, Chen X, Peng J, Panahi M, Lee S (2021) Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front 12(1):93–107

    Article  Google Scholar 

  • Ciampalini A, Raspini F, Lagomarsino D, Catani F, Casagli N (2016) Landslide susceptibility map refinement using PSInSAR data. Remote Sens Environ 184:302–315

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Env 73(2):209–263

    Google Scholar 

  • Dai K, Li Z, Xu Q, Burgmann R, Milledge DG, Tomas R, Fan X, Zhao C, Liu X, Peng J, Zhang Q, Wang Z, Qu T, He C, Li D, Liu J (2020) Entering the era of earth observation-based landslide warning systems: a novel and exciting framework. IEEE Geosci Remote Sens Mag 8(1):136–153

    Article  Google Scholar 

  • Dong J, Liao M, Xu Q, Zhang L, Tang M, Gong J (2018) Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: a case study of Danba County in the Dadu River Basin. Eng Geol 240:95–109

    Article  Google Scholar 

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Han Z, Pham BT (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed. Japan Landslides 17(3):641–658

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazard 18(8):2161–2181

    Article  Google Scholar 

  • Fu S, Chen L, Woldai T, Yin K, Gui L, Li D, Du J, Zhou C, Xu Y, Lian Z (2020) Landslide hazard probability and risk assessment at the community level: a case of western Hubei, China. Nat Hazard 20(2):581–601

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4):272–299

    Article  Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin Venezuela. Eng Geol 78(1–2):11–27

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148(3):839–843

    Article  Google Scholar 

  • Handwerger AL, Booth AM, Huang M-H, Fielding EJ (2021) Inferring the subsurface geometry and strength of slow-moving landslides using 3-D velocity measurements from the NASA/JPL UAVSAR. J Geophys Res Earth Surf 126:e2020JF005898. https://doi.org/10.1029/2020JF005898

    Article  Google Scholar 

  • Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304(5679):1952–1955

    Article  Google Scholar 

  • Hong H, Liu J, Zhu AX (2020) Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci Total Environ 718:137231

    Article  Google Scholar 

  • Hong H, Miao Y, Liu J, Zhu AX (2019) Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. CATENA 176:45–64

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett, 31 (23)

  • Hu X, Bürgmann R, Fielding EJ, Lee H (2020) Internal kinematics of the Slumgullion landslide (USA) from high-resolution UAVSAR InSAR data. Remote Sens Environ 251:112057

    Article  Google Scholar 

  • Hu X, Lu Z, Pierson TC, Kramer R, George DL (2018) Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide. Geophys Res Lett 45(3):1453–1462

    Article  Google Scholar 

  • Huang J, Asch T, Wang C, Li Q (2019) Study on the combined threshold for gully-type debris flow early warning. Nat Hazard 19(1):41–51

    Article  Google Scholar 

  • Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. CATENA 165:520–529

    Article  Google Scholar 

  • Intrieri E, Carlà T, Farina P, Bardi F, Ketizmen H, Casagli N (2019) Satellite interferometry as a tool for early warning and aiding decision making in an open-pit mine. IEEE J Sel Top Appl Earth Obs Remote Sens 12(12):5248–5258

    Article  Google Scholar 

  • Juang CH (2021) BFTS-Engineering geologists’ field station to study reservoir landslides. Eng Geol 284:106038

    Article  Google Scholar 

  • Kawagoe S, Kazama S, Sarukkalige PR (2010) Probabilistic modelling of rainfall induced landslide hazard assessment. Hydrol Earth Syst Sci 14(6):1047–1061

    Article  Google Scholar 

  • Lacroix P, Handwerger AL, Bièvre G (2020) Life and death of slow-moving landslides. Nat Rev Earth Environ 1(8):404–419

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50(6):847–855

    Article  Google Scholar 

  • Liu C (2014) Landslide risk assessment at Wanzhou urban area in the Three Gorges Reservoir. China University of Geosciences Press, Wuhan

    Google Scholar 

  • Liu X, Zhao C, Zhang Q, Lu Z, Li Z, Yang C, Zhu W, Zeng J, Chen L, Liu C (2021) Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Eng Geol, 106033

  • Lu P, Catani F, Tofani V, Casagli N (2014) Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 11(4):685–696

    Article  Google Scholar 

  • Ma P, Cui Y, Wang W, Lin H, Zhang Y (2021) Coupling InSAR and numerical modeling for characterizing landslide movements under complex loads in urbanized hillslopes. Landslides, 1–13

  • Mandrekar JN (2010) Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 5(9):1315–1316

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234

    Article  Google Scholar 

  • Morishita Y, Lazecky M, Wright T J et al (2020) LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor[J]. Remote Sens 12(3):424

  • Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86(1–2):12–24

    Article  Google Scholar 

  • Novellino A, Cigna F, Brahmi M, Sowter A, Bateson L, Marsh S (2017) Assessing the feasibility of a national InSAR ground deformation map of Great Britain with Sentinel-1. Geosciences 7(2):19

    Article  Google Scholar 

  • Peng L, Niu R, Huang B, Wu X, Zhao Y, Ye R (2014) Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the Three Gorges area, China. Geomorphology 204:287–301

    Article  Google Scholar 

  • Pham BT, Phong TV, Nguyen-Thoi T, Parial K, KS Singh, Ly HB, Nguyen KT, Ho LS, Le HV, Prakash I (2020) Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto International, 1–23

  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province Iran. J Earth Syst Sci 122(2):349–369

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759

    Article  Google Scholar 

  • Solari L, Bianchini S, Franceschini R, Barra A, Monserrat O, Thuegaz P, Bertolo D, Crosetto M, Catani F (2020) Satellite interferometric data for landslide intensity evaluation in mountainous regions. Int J Appl Earth Obs Geoinf 87:102028

    Google Scholar 

  • Segoni S, Tofani V, Rosi A, Catani F, Casagli N (2018) Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front Earth Sci 6:85

    Article  Google Scholar 

  • Segoni S, Rosi A, Rossi G, Catani F, Casagli N (2014) Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems. Nat Hazard 14(9):2637–2648

    Article  Google Scholar 

  • Tang H, Wasowski J, Juang CH (2019) Geohazards in the three Gorges Reservoir Area, China–lessons learned from decades of research. Eng Geol 261:105267

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419

    Article  Google Scholar 

  • Wang Z, Wang D, Guo Q, Wang D (2020a) Regional landslide hazard assessment through integrating susceptibility index and rainfall process. Nat Hazards 104(3):2153–2173

    Article  Google Scholar 

  • Wang Y, Sun D, Wen H, Zhang H, Zhang F (2020b) Comparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang County (Chongqing, China). Int J Environ Res Public Health 17(12):4206

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138

    Article  Google Scholar 

  • Wasowski J, Pisano L (2020) Long-term InSAR, borehole inclinometer, and rainfall records provide insight into the mechanism and activity patterns of an extremely slow urbanized landslide. Landslides 17(2):445–457

    Article  Google Scholar 

  • Wu X, Niu R, Ren F, Peng L (2013) Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China. Environ Earth Sci 70:1307–1318

    Article  Google Scholar 

  • Xie M, Zhao W, Ju N, He C, Huang H, Cui Q (2020) Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan China. Eng Geol 277:105781

    Article  Google Scholar 

  • Yan G, Yin Y, Huang B, Zhang Z, Zhu S (2019) Formation mechanism and characteristics of the Jinjiling landslide in Wushan in the Three Gorges Reservoir region China. Landslides 16(11):2087–2101

    Article  Google Scholar 

  • Yin Y, Wang H, Gao Y, Li X (2010) Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir China. Landslides 7(3):339–349

    Article  Google Scholar 

  • Yu L, Cao Y, Zhou C, Wang Y, Huo Z (2019) Landslide susceptibility mapping combining information gain ratio and support vector machines: a case study from Wushan segment in the Three Gorges Reservoir area China. Appl Sci 9(22):4756

    Article  Google Scholar 

  • Zhang C, Yin Y, Yan H, Li H, Dai Z, Zhang N (2021) Reactivation characteristics and hydrological inducing factors of a massive ancient landslide in the three Gorges Reservoir China. Eng Geol 292:106273

    Article  Google Scholar 

  • Zhang Y, Meng X, Dijkstra TA, Jordan CJ, Chen G, Zeng R, Novellino A (2020) Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens Environ 241:111738

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Li Y (2020a) Landslide susceptibility assessment by applying the coupling method of radial basis neural network and Adaboost: A case study from the Three Gorges Reservoir Area. Earth Sci 45(6):1865–1876

    Google Scholar 

  • Zhou C, Cao Y, Yin K, Wang Y, Shi X, Catani F, Ahmed B (2020b) Landslide characterization applying Sentinel-1 images and InSAR technique: the Muyubao landslide in the Three Gorges Reservoir Area China. Remote Sens 12(20):3385

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B (2016) Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng Geol 204:108–120

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR (2018a) Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China. Comput Geosci 112:23–37

    Article  Google Scholar 

  • Zhou C, Yin K, Cao Y, Intrieri E, Ahmed B, Catani F (2018b) Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 15(11):2211–2225

    Article  Google Scholar 

  • Zhou J, Cui P, Yang X, Su Z, Guo X (2013) Debris flows introduced in landslide deposits under rainfall conditions: the case of Wenjiagou gully. J Mt Sci 10(2):249–260

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks Prof. Andy Hooper in Leeds University for his help in MT-InSAR processing. We thank the assistance of Chongqing Bureau of Planning and Natural Resources and Dr. Xin Liang for data collection. We appreciate the reviewers for their suggestions that significantly improved the quality of this paper.

Funding

This research is funded by the National Natural Science Foundation of China (No. 41907253 and No. 41702330) and Key Research and Development Program of Hubei Province (No. 2021BCA219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunlong Yin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Cao, Y., Hu, X. et al. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area. Landslides 19, 1585–1597 (2022). https://doi.org/10.1007/s10346-021-01796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01796-1

Keywords

Navigation