Skip to main content
Log in

Mechanisms on spasmolytic and anti-inflammatory effects of a herbal medicinal product consisting of myrrh, chamomile flower, and coffee charcoal

Spasmolytische und antiinflammatorische Wirkmechanismen eines pflanzlichen Arzneimittels bestehend aus Myrrhe, Kamillenblüten und Kaffeekohle

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Inflammatory bowel disease or irritable bowel syndrome are chronic gastrointestinal disorders which are associated with a lifelong therapeutic need. The disease results in physical, psychological, and social problems with an impact on partnership, sexuality, education, and career. Thus, the number of patients and health care professionals relying on traditional and complementary medicines and especially phytotherapy for the treatment of these chronic conditions is increasing over recent years. One traditional herbal medicinal product consisting of chamomile flower, myrrh, and coffee charcoal has been widely used in clinical practice within this indication area. Long-term experience and an increasing understanding of the pharmacological mechanisms substantiate its application and clinical effectiveness. Mainly the spasmolytic and anti-inflammatory effects provide a rationale for its therapeutic application. In addition, synergistic effects between the herbal components contribute to the overall effect of this medication.

Zusammenfassung

Chronisch-entzündliche Darmerkrankungen und das Reizdarmsyndrom sind chronische Erkrankungen des Gastrointestinaltrakts, welche meist lebenslang therapiert werden müssen. Aufgrund der Erkrankung ergeben sich für die Betroffenen meist körperliche, psychische und soziale Probleme, welche sich negativ auf Partnerschaft, Sexualität, Ausbildung und Beruf auswirken. Aus diesem Grund greifen immer mehr Patienten und Ärzte auf Komplementär- und Alternativmedizin zurück, und insbesondere die Phytotherapie hat sich in den letzten Jahren in der Behandlung dieser chronischen Erkrankungen etabliert. Ein traditionell angewendetes pflanzliches Arzneimittel, bestehend aus Kamillenblüten, Myrrhe und Kaffeekohle (Myrrhinil-Intest®) wird in diesem Indikationsgebiet bereits seit mehreren Jahrzehnten erfolgreich eingesetzt. Die klinische Wirksamkeit und gute Verträglichkeit des Präparats ist durch langjährige Erfahrung und ein immer besseres Verständnis der zugrundeliegenden pharmakologischen Wirkmechanismen gesichert. Insbesondere spasmolytische und antiinflammatorische Wirkstrategien der pflanzlichen Komponenten begründen den erfolgreichen Einsatz im klinischen Alltag. Synergistische Effekte zwischen den pflanzlichen Bestandteilen tragen zur nachgewiesenen Wirksamkeit des Kombinationspräparats bei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vind I, et al. Increasing incidences of inflammatory bowel disease and decreasing surgery rates in Copenhagen City and County, 2003–2005: a population-based study from the Danish Crohn colitis database. Am J Gastroenterol. 2006;101(6):1274–82.

    Article  PubMed  Google Scholar 

  2. Sina C, et al. The German competence network inflammatory bowel disease (KNCED) – network research leads to the identification of the cause of disease and to the improvement in patient care. Med Klin (Munich). 2006;101(2):161–5.

    Article  Google Scholar 

  3. Knoflach P. Chronisch entzündliche Darmerkrankungen: Neues zur Ätiopathogenese. J Gastroenterol Hepatol Erkrank. 2014;12(3):7–10.

    Google Scholar 

  4. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–42.

    Article  CAS  PubMed  Google Scholar 

  5. Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2000;6(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  6. Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation. 2010;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moser G. Bedeutung von Stress und Depression bei chronisch entzündlichen Darmerkrankungen. J Gastroenterol Hepatol Erkrank. 2015;3(2):26–30.

    Google Scholar 

  8. Langhorst J, et al. Systematic review of complementary and alternative medicine treatments in inflammatory bowel diseases. J Crohns Colitis. 2015;9(1):86–106.

    Article  CAS  PubMed  Google Scholar 

  9. Hilsden RJ, et al. Use of complementary and alternative medicine by patients with Inflammatory Bowel Disease. Inflamm Bowel Dis. 2011;17(2):655–62.

    Article  PubMed  Google Scholar 

  10. Ng SC, et al. Systematic review: the efficacy of herbal therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38(8):854–63.

    Article  CAS  PubMed  Google Scholar 

  11. Wagner H. Multitarget therapy – the future of treatment for more than just functional dyspepsia. Phytomedicine. 2006;13:122–9.

    Article  PubMed  Google Scholar 

  12. Albrecht U, et al. Efficacy and safety of a herbal medicinal product containing myrrh, chamomile and coffee charcoal for the treatment of gastrointestinal disorders: a non-interventional study. BMJ Open Gastroenterol. 2014;1(1):e000015. doi:10.1136/bmjgast-2014-000015.

    Article  PubMed  Google Scholar 

  13. Stange R, et al. Günstiger Verlauf einer schweren Colitis ulcerosa. Forsch Komplementmed. 2004;5(6):296–9.

    Article  Google Scholar 

  14. Gruia FS. Das Phytotherapeutikum Myrrhinil-Intest® bei unspezifischen Darmerkrankungen. Erfahrungsheilkunde. 1987;2:77–82.

    Google Scholar 

  15. Langhorst J, et al. Randomised clinical trial: a herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis – a double-blind, double-dummy study. Aliment Pharmacol Ther. 2013;38(5):490–500.

    Article  CAS  PubMed  Google Scholar 

  16. Malykhina AP, Akbarali HI. Inflammation-induced “channelopathies” in the gastrointestinal smooth muscle. Cell Biochem Biophys. 2004;41(2):319–30.

    Article  PubMed  Google Scholar 

  17. Srinath AI, et al. Pain management in patients with inflammatory bowel disease: insights for the clinician. Therap Adv Gastroenterol. 2012;5(5):339–57.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vissiennon C. In vitro studies on the mechanisms of action of chamomile, myrrh and coffee charcoal: components of a traditional herbal medicinal product (Myrrhinil-Intest®). Dissertation. Leipzig: Universität Leipzig; 2014.

    Google Scholar 

  19. Pumnea T, et al. The herbal extracts of Myrrh, Chamomile and Coffee Charcoal modulate intestinal neurotransmission and motility in murine small intestine. Phytomedicine in preparation

  20. Schilcher H. Die Kamille. Handbuch für Ärzte, Apotheker und andere Naturwissenschaftler. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1987.

    Google Scholar 

  21. Achterrath-Tuckermann U, et al. Pharmakologische Untersuchungen von Kamillen-Inhaltsstoffen. Planta Med. 1980;39(05):38–50.

    Article  CAS  PubMed  Google Scholar 

  22. Mehmood MH, et al. Antidiarrhoeal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K(+)-channels activation. BMC Complement Altern Med. 2015;15:75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sebai H, et al. Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnopharmacol. 2014;152(2):327–32.

    Article  CAS  PubMed  Google Scholar 

  24. Vissiennon C, et al. Calcium antagonistic effects of ethanolic myrrh extract in inflamed intestinal smooth muscle preparations. Planta Med. 2013; doi:10.1055/s-0033-1351895.

    Google Scholar 

  25. Rogler G, Andus T. Cytokines in inflammatory bowel disease. World J Surg. 1998;22(4):382–9.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Hindawi MK, et al. Anti-inflammatory activity of some Iraqi plants using intact rats. J Ethnopharmacol. 1989;26(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  27. Gerritsen ME, et al. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol. 1995;147(2):278.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Della Loggia R, et al. Evaluation of the anti-inflammatory activity of chamomile preparations. Planta Med. 1990;56(06):657–8.

    Article  Google Scholar 

  29. Tubaro A, et al. Evaluation of antiinflammatory activity of a chamomile extract topical application. Planta Med. 1984;50(4):359.

    Article  Google Scholar 

  30. Bhaskaran N, et al. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity. Int J Mol Med. 2010;26(6):935–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Menghini L, et al. An hydroalcoholic chamomile extract modulates inflammatory and immune response in HT29 cells and isolated rat colon. Phytother Res. 2016;30(9):1513–8.

    Article  CAS  PubMed  Google Scholar 

  32. Srivastava JK, Pandey M, Gupta S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci. 2009;85(19–20):663–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ammon HP, Sabieraj J, Kaul R. Kamille. Mechanismus der antiphlogistischen Wirkung von Kamillenextrakten und -inhaltsstoffen. Dtsch Apoth Ztg. 1996;136:1821–34.

    Google Scholar 

  34. Rocha NFM, et al. Anti-nociceptive and anti-inflammatory activities of (−)-alpha-bisabolol in rodents. Naunyn Schmiedebergs Arch Pharmacol. 2011;384(6):525–33.

    Article  CAS  PubMed  Google Scholar 

  35. Vissiennon C, et al. Chamomile flower, myrrh and coffee charcoal, components of a traditional herbal medicinal product, diminish pro-inflammatory activation in human macrophages. Z Phytother. 2016. doi:10.1055/s-0036-1584491.

    Google Scholar 

  36. Su S, et al. Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. J Ethnopharmacol. 2011;134(2):251–8.

    Article  PubMed  Google Scholar 

  37. Su S, et al. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J Ethnopharmacol. 2012;139(2):649–56.

    Article  PubMed  Google Scholar 

  38. Tariq M, et al. Anti-inflammatory activity of Commiphora molmol. Agents Actions. 1986;17(3–4):381–2.

    Article  CAS  PubMed  Google Scholar 

  39. Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol. 1998;60(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  40. Shalaby MA, Hammouda AA-E. Analgesic, anti-inflammatory and anti-hyperlipidemic activities of Commiphora molmol extract (Myrrh). J Intercult Ethnopharmacol. 2014;3(2):56–62.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fatani AJ, et al. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Exp Ther Med. 2016;12(2):730–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tipton DA, et al. In vitro cytotoxic and anti-inflammatory effects of myrrh oil on human gingival fibroblasts and epithelial cells. Toxicol In Vitro. 2003;17(3):301–10.

    Article  CAS  PubMed  Google Scholar 

  43. Tipton DA, Hamman NR, Dabbous MK. Effect of myrrh oil on IL-1beta stimulation of NF-kappaB activation and PGE(2) production in human gingival fibroblasts and epithelial cells. Toxicol In Vitro. 2006;20(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  44. Kim M‑S, et al. Myrrh inhibits LPS-induced inflammatory response and protects from cecal ligation and puncture-induced sepsis. Evid Based Complement Alternat Med. 2012;2012(3):1–11.

    Google Scholar 

  45. Karp LC, Shanahan F, Targan SR. (editors) Inflammatory bowel disease. From bench to bedside. Norwell: Springer; 2005.

    Google Scholar 

  46. Koshihara Y, et al. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim Biophys Acta. 1984;792(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  47. Nardini M, et al. In vitro inhibition of the activity of phosphorylase kinase, protein kinase C and protein kinase A by caffeic acid and a procyanidin-rich pine bark (Pinus marittima) extract. Biochim Biophys Acta. 2000;1474(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  48. Feng R, et al. Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005;280(30):27888–95.

    Article  CAS  PubMed  Google Scholar 

  49. Yang WS, et al. IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm. 2013;2013(1):1–12.

    Google Scholar 

  50. Bone K, Mills S. Principles of herbal pharmacology. In: Bone K, Mills S, editors. Principles and practice of phytotherapy. Amsterdam: Elsevier; 2013. pp. 17–82.

    Google Scholar 

  51. Berenbaum MC. What is synergy? Pharmacol Rev. 1989;41(2):93–141.

    CAS  PubMed  Google Scholar 

  52. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  CAS  PubMed  Google Scholar 

  53. Fu J, et al. Drug combination in vivo using combination index method. Taxotere and T607 against colon carcinoma HCT-116 xenograft tumor in nude mice. Synergy. 2016;3(3):15–30.

    Article  Google Scholar 

  54. Vissiennon C, et al. Synergistic interactions of chamomile flower, myrrh and coffee charcoal in inhibiting pro-inflammatory chemokine release from activated human macrophages. Synergy, in preparation

    Google Scholar 

  55. Kopydlowski KM, et al. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J Immunol. 1999;163(3):1537–44.

    CAS  PubMed  Google Scholar 

  56. Berkman N, et al. Inhibition of macrophage inflammatory protein-1 alpha expression by IL-10. Differential sensitivities in human blood monocytes and alveolar macrophages. J Immunol. 1995;155(9):4412–8.

    CAS  PubMed  Google Scholar 

  57. Carlsen HS, et al. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood. 2004;104(10):3021–7.

    Article  CAS  PubMed  Google Scholar 

  58. Ansel K, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ development. Curr Opin Immunol. 2001;13(2):172–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial funding for the experiments was provided by Repha GmbH Biologische Arzneimittel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cica Vissiennon.

Ethics declarations

Conflict of interest

C. Vissiennon is employed by Repha GmbH Biologische Arzneimittel. K.-H. Goos is shareholder of Repha GmbH Biologische Arzneimittel. J. Arnhold and K. Nieber declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vissiennon, C., Goos, KH., Arnhold, J. et al. Mechanisms on spasmolytic and anti-inflammatory effects of a herbal medicinal product consisting of myrrh, chamomile flower, and coffee charcoal. Wien Med Wochenschr 167, 169–176 (2017). https://doi.org/10.1007/s10354-016-0538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-016-0538-y

Keywords

Schlüsselwörter

Navigation