Skip to main content
Log in

A study of molecular diffusion across a water/oil interface in a Y–Y shaped microfluidic device

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The diffusion behaviour of Co(II) ion in an aqueous homogeneous system and that of 8-hydroxyquinoline (8HQ) in a heterogeneous liquid–liquid system was measured in a Y–Y shaped microfluidic device. We propose a modified version of a previously published equation for a static system to describe the diffusion behaviour of chemical species in this microfluidic device. Specific adaptations of the original equation to the micro environment are illustrated and discussed. The model proposed successfully fitted the diffusion of Co(II) in a homogeneous system (aqueous solutions) and 8HQ across a water/oil interface. We envisage the application of the proposed equation for the discrimination of the diffusion contribution in solvent extraction kinetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aota A, Mawatari K, Kitamori T (2009) Parallel multiphase microflows: fundamental physics, stabilization methods and applications. Lab Chip 9(17):2470–2476

    Article  Google Scholar 

  • Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74(12):2637–2652

    Article  Google Scholar 

  • Benson RS, Ponton JW (1993) Process miniaturization—A route to total environmental acceptability? Chem Eng Res Des 71(A2):160–168

    Google Scholar 

  • Bowden SA, Monaghan PB, Wilson R, Parnell J, Cooper JM (2006) The liquid-liquid diffusive extraction of hydrocarbons from a North Sea oil using a microfluidic format. Lab Chip 6(6):740–743

    Article  Google Scholar 

  • Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. A 58(1):13–18

    Google Scholar 

  • Ciceri D, Perera JM, Stevens GW (2011) Extraction of co(ii) by di (2-ethylhexyl) phosphoric acid in a microfluidic device. In: Proceedings of the international solvent extraction conference 2011. ISEC, Santiago

  • Crc handbook of chemistry and physics (2009–2010), 90th edn. CRC Press, Boca Raton

  • Dambrine J, Géraud B, Salmon JB (2009) Interdiffusion of liquids of different viscosities in a microchannel. New J Phys 11:075015

    Article  Google Scholar 

  • Dessimoz AL, Cavin L, Renken A, Kiwi-Minsker L (2008) Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chem Eng Sci 63(16):4035–4044

    Article  Google Scholar 

  • Dreisinger DB, Cooper WC (1986) The kinetics of cobalt and nickel extraction using hehehp. Solvent Extr Ion Exch 4(2):317–344

    Article  Google Scholar 

  • Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64(17):1926–1932

    Article  Google Scholar 

  • Hessel V, Kralisch D, Krtschil U (2008) Sustainability through green processing—novel process windows intensify micro and milli process technologies. Energy Environ Sci 1(4):467–478

    Article  Google Scholar 

  • Hotokezaka H, Tokeshi M, Harada M, Kitamori T, Ikeda Y (2005) Development of the innovative nuclide separation system for high-level radioactive waste using microchannel chip-extraction behavior of metal ions from aqueous phase to organic phase in microchannel. Prog Nucl Energy 47(1–4):439–447

    Article  Google Scholar 

  • Hotta T, Nii S, Yajima T, Kawaizumi F (2007) Mass transfer characteristics of a microchannel device of split-flow type. Chem Eng Technol 30(2):208–213

    Article  Google Scholar 

  • Jacobson SC, Hergenroder R, Moore AW, Ramsey JM (1994) Precolumn reactions with electrophoretic analysis integrated on a microchip. Anal Chem 66(23):4127–4132

    Article  Google Scholar 

  • Kamholz AE, Yager P (2002) Molecular diffusive scaling laws in pressure-driven microfluidic channels deviation from one-dimensional Einstein approximations. Sens Actuators B 82(1):117–121

    Article  Google Scholar 

  • Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the t-sensor. Anal Chem 71:5340–5347

    Article  Google Scholar 

  • Kim HB, Ueno K, Chiba M, Kogi O, Kitamura N (2000) Spatially-resolved fluorescence spectroscopic study on liquid/liquid extraction processes in polymer microchannels. Anal Sci 16(8):871–876

    Article  Google Scholar 

  • Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens Actuators B 1(1–6):249–255

    Article  Google Scholar 

  • McCulloch JK, Kelly ED, Perera JM, White LR, Stevens GW, Grieser F (1996) Direct spectroscopic measurement and theoretical modelling of the diffusion of a single species in a two-phase unstirred system. J Colloid Interface Sci 184(2):399–405

    Article  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Iupac. Compendium of chemical terminology, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Nishi K, Perera JM, Misumi R, Kaminoyama M, Stevens GW (2010) Study of diffusion of co(ii) and co(ii)-dehpa complex in a microfluidic device. J Chem Eng Jpn 43(4):342–348

    Article  Google Scholar 

  • Ohno K, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22):4443–4453

    Article  Google Scholar 

  • Phillips JP, Merritt LL Jr (1948) Ionization constants of some substituted 8-hydroxyquinolines. J Am Chem Soc 70(1):410–411

    Article  Google Scholar 

  • Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1 Introduction, theory and technology. Anal Chem 74(12):2623–2636

    Article  Google Scholar 

  • Ristenpart WD, Wan J, Stone HA (2008) Enzymatic reactions in microfluidic devices. Anal Chem 80:3270–3276

    Article  Google Scholar 

  • Salmon JB, Ajdari A (2007) Transverse transport of solutes between co-flowing pressure-driven streams for microfluidic studies of diffusion/reaction processes. J Appl Phys 101(7):074902

    Article  Google Scholar 

  • Salmon JB, Ajdari A, Tabeling P (2005) In situ Raman imaging of interdiffusion in a microchannel. Appl Phys Lett 86:094106

    Article  Google Scholar 

  • Sato K, Tokeshi M, Sawada T, Kitamori T (2000) Molecular transport between two phases in a microchannel. Anal Sci 16(5):455–456

    Article  Google Scholar 

  • Surmeian M, Hibara A, Slyadnev M, Uchiyama K, Hisamoto H, Kitamori T (2001) Distribution of methyl red on the water-organic liquid interface in a microchannel. Anal Lett 34(9):1421–1429

    Article  Google Scholar 

  • Surmeian M, Slyadnev MN, Hisamoto H, Hibara A, Uchiyama K, Kitamori T (2002) Three-layer flow membrane system on a microchip for investigation of molecular transport. Anal Chem 74(9):2014–2020

    Article  Google Scholar 

  • Tokeshi M, Minagawa T, Kitamori T (2000a) Integration of a microextraction system on a glass chip: ion-pair solvent extraction of fe (ii) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride. Anal Chem 72(7):1711–1714

    Article  Google Scholar 

  • Tokeshi M, Minagawa T, Kitamori T (2000b) Integration of a microextraction system solvent extraction of a co–2-nitroso-5-dimethylaminophenol complex on a microchip. J Chromatogr A 894(1–2):19–23

    Article  Google Scholar 

  • Tokeshi M, Minagawa T, Uchiyama K, Hibara A, Sato K, Hisamoto H, Kitamori T (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74(7):1565–1571

    Article  Google Scholar 

  • West J, Becker M, Tombrink S, Manz A (2008) Micro total analysis systems: latest achievements. Anal Chem 80(12):4403–4419

    Article  Google Scholar 

Download references

Acknowledgments

Support from the Australian Research Council and the Particulate Fluids Processing Centre is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey W. Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciceri, D., Perera, J.M. & Stevens, G.W. A study of molecular diffusion across a water/oil interface in a Y–Y shaped microfluidic device. Microfluid Nanofluid 11, 593–600 (2011). https://doi.org/10.1007/s10404-011-0824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0824-3

Keywords

Navigation