Skip to main content

Advertisement

Log in

Brownian motion-induced water slip inside carbon nanotubes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are performed to understand the characteristics of the one-dimensional Brownian motion of water columns inside carbon nanotubes (CNTs) at room temperature. It is found that the probability of 2–10-nm-long water columns sliding a distance larger than the energy barrier period inside 2–5-nm-diameter CNTs is greater than 50 %. Moreover, a conservative estimation gives that the thermal fluctuation-induced driving force exceeds the upper bound of the sliding energy barrier for a water column shorter than 117 nm. These findings imply that although water molecules form layered structures near the CNT inner walls, there is no critical interfacial shear stress to conquer, and water could slip inside CNTs under any given pressure drop due to the thermal activation at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  • Chen X, Cao GX, Han AJ, Punyamurtula VK, Liu L, Culligan PJ, Kim T, Qiao Y (2008) Nanoscale fluid transport: size and rate effects. Nano Lett 8:2988–2992

    Article  Google Scholar 

  • Chen C, Ma M, Jin K, Liu JZ, Shen L, Zheng Q, Xu Z (2011) Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes. Phys Rev E 84:046314

    Article  Google Scholar 

  • Gonzalez MA, Abascal JLF (2010) The shear viscosity of rigid water models. J Chem Phys 132:096101

    Article  Google Scholar 

  • Hardy DJ, Stone JE, Schulten K (2009) Multilevel summation of electrostatic potentials using graphics processing units. Parallel Comput 35(3):164–177

    Article  Google Scholar 

  • Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  • Kadanoff LP (2000) Statistical physics: statics, dynamics and renormalization. World Scientific. http://www.worldscientific.com/worldscibooks/10.1142/4016

  • Ma MD, Shen L, Sheridan J, Liu JZ, Chen C, Zheng Q (2011) Friction of water slipping in carbon nanotubes. Phys Rev E 83(3):036316

    Article  Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics—enhanced flow in carbon nanotubes. Nat 438(7064):44

    Google Scholar 

  • Markesteijn AP, Hartkamp R, Luding S and Westerweel J (2012) A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel. J Chem Phys 136:134104

    Google Scholar 

  • Martini A, Hsu HY, Patankar NA, Lichter S (2008) Slip at high shear rates. Phys Rev Lett 100:206001

    Article  Google Scholar 

  • Mo H, Evmenenko G, Dutta P (2005) Ordering of liquid squalane near a solid surface. Chem Phys Lett 415:106–109

    Article  Google Scholar 

  • Nose S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  • Pathria RK (1996) Statistical mechanics. Butterworth-Heinemann, UK

    MATH  Google Scholar 

  • Peng XS, Jin J, Nakamura Y, Ohno T, Ichinose I (2009) Ultrafast permeation of water through protein-based membranes. Nat Nanotechnol 4:353–357

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472

    Article  Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  Google Scholar 

  • Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water-carbon interaction for use in MD simulations of graphite and carbon nanotubes. J Phys Chem B 107:1345–1352

    Article  Google Scholar 

  • Xiong W, Liu JZ, Ma M, Xu ZP, Sheridan J, Zheng QS (2011) Strain engineering water transport in graphene nanochannels. Phys Rev E 84:056329

    Article  Google Scholar 

  • Xiong W, Liu JZ, Zhang ZL, and Zheng QS (2013) Control of surface wettability via strain engineering. arXiv:1304.4770

  • Yang F (2009) Slip boundary condition for viscous flow over solid surface—a rate process. Chem Eng Commun 197:544–550

    Article  Google Scholar 

Download references

Acknowledgments

L.S. acknowledges the financial support from the University of Sydney through the International Program Development Fund. Q.Z. appreciates the support by the National Science Foundation of China (NSFC) through Grant No. 10672089, No. 10772100 and No. 10832005, and the 973 Program No. 2007CB936803. The authors are grateful to the computing support from NCI National Facilities in Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luming Shen or Quanshui Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Shen, L., Ma, M. et al. Brownian motion-induced water slip inside carbon nanotubes. Microfluid Nanofluid 16, 305–313 (2014). https://doi.org/10.1007/s10404-013-1247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1247-0

Keywords

Navigation