Skip to main content
Log in

A meshless moving morphable component-based method for structural topology optimization without weak material

基于无网格移动变形构件的结构拓扑优化方法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Traditional topology optimization methods often introduce weak artificial material to mimic voids to avoid the singularity of the global stiffness matrix and carry out topology optimization with a fixed finite element (FE) mesh. This treatment, however, may not only increase the computational cost for structural analysis but also lead to unfavorable numerical instabilities, especially when large deformations and dynamic/buckling behaviors are involved. In the present work, a new meshless moving morphable component-based method (ML-MMC), which structural analysis is carried out only on the solid region occupied by components, is proposed. In this approach, the coupling of discrete components is achieved through the adaptively constructed influence domain of the meshless shape function. Therefore, the singularity problem of the stiffness matrix can be naturally avoided without introducing weak artificial material. Compared with traditional methods, the number of degrees of freedoms (DOFs) can be reduced substantially under this treatment. The effectiveness of the proposed approach is also illustrated by some representative examples.

摘要

传统拓扑优化方法往往需引入人工弱材料来模拟孔洞, 以避免整体刚度矩阵的奇异性, 并使用固定的有限元网格进行分析和优化. 然而, 这种处理方法不仅会增加结构分析的计算成本, 还会导致不利的数值不稳定性, 尤其是当涉及大变形和动力/屈曲行为时. 本文提出了一种新的基于无网格的移动可变形组件拓扑优化方法(ML-MMC), 该方法只对组件占据的实体区域进行结构分析, 并通过自适应构造无网格形函数的影响域来实现离散组件的耦合, 可以在不引入人工弱材料的情况下自然地避免拓扑优化过程中刚度矩阵的奇异性问题. 与传统拓扑优化方法相比, 这种处理方法可以大大减少优化过程中结构分析的自由度(DOFs)数量. 一些典型的二维和三维算例说明了该方法的有效性和高效性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Bendsøe, and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71, 197 (1988).

    Article  MATH  Google Scholar 

  2. M. P. Bendsøe, and O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. 69, 635 (1999).

    Article  MATH  Google Scholar 

  3. Y. M. Xie, and G. P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49, 885 (1993).

    Article  Google Scholar 

  4. J. A. Sethian, and A. Wiegmann, Structural boundary design via level set and immersed interface methods, J. Comput. Phys. 163, 489 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192, 227 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Allaire, F. Jouve, and A. M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. 194, 363 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Guo, W. Zhang, and W. Zhong, Doing topology optimization explicitly and geometrically—A new moving morphable components based framework, J. Appl. Mech. 81, 081009 (2014).

    Article  Google Scholar 

  8. W. Zhang, D. Li, J. Zhou, Z. Du, B. Li, and X. Guo, A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints, Comput. Methods Appl. Mech. Eng. 334, 381 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. A. Norato, B. K. Bell, and D. A. Tortorelli, A geometry projection method for continuum-based topology optimization with discrete elements, Comput. Methods Appl. Mech. Eng. 293, 306 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsøe, A geometry projection method for shape optimization, Int. J. Numer. Meth. Engng. 60, 2289 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Guo, and G. D. Cheng, Recent development in structural design and optimization, Acta Mech. Sin. 26, 807 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Fernandes, J. M. Guedes, and H. Rodrigues, Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter”, Comput. Struct. 73, 583 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Zhang, W. Yang, J. Zhou, D. Li, and X. Guo, Structural topology optimization through explicit boundary evolution, J. Appl. Mech. 84, 011011 (2017).

    Article  Google Scholar 

  14. Z. Wu, S. Wang, R. Xiao, and L. Yu, A local solution approach for level-set based structural topology optimization in isogeometric analysis, J. Comput. Des. Eng. 7, 514 (2020).

    Google Scholar 

  15. N. L. Pedersen, Maximization of eigenvalues using topology optimization, Struct Multidisc Optim 20, 2 (2000).

    Article  Google Scholar 

  16. S. H. Ha, and S. Cho, Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh, Comput. Struct. 86, 1447 (2008).

    Article  Google Scholar 

  17. T. E. Bruns, and D. A. Tortorelli, An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms, Int. J. Numer. Meth. Engng. 57, 1413 (2003).

    Article  MATH  Google Scholar 

  18. T. E. Bruns, Zero density lower bounds in topology optimization, Comput. Methods Appl. Mech. Eng. 196, 566 (2006).

    Article  MATH  Google Scholar 

  19. Q. K. Nguyen, S. Serra-Capizzano, and E. Wadbro, On using a zero lower bound on the physical density in material distribution topology optimization, Comput. Methods Appl. Mech. Eng. 359, 112669 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Shakour, and O. Amir, Topology optimization with precise evolving boundaries based on IGA and untrimming techniques, Comput. Methods Appl. Mech. Eng. 374, 113564 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Allaire, C. Dapogny, and P. Frey, A mesh evolution algorithm based on the level set method for geometry and topology optimization, Struct. Multidisc. Optim. 48, 711 (2013).

    Article  MathSciNet  Google Scholar 

  22. G. Allaire, C. Dapogny, and P. Frey, Shape optimization with a level set based mesh evolution method, Comput. Methods Appl. Mech. Eng. 282, 22 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Feppon, G. Allaire, C. Dapogny, and P. Jolivet, Topology optimization of thermal fluid-structure systems using body-fitted meshes and parallel computing, J. Comput. Phys. 417, 109574 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Feppon, G. Allaire, C. Dapogny, and P. Jolivet, Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers, Comput. Methods Appl. Mech. Eng. 376, 113638 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Yamasaki, A. Kawamoto, T. Nomura, and K. Fujita, A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh, Int. J. Numer. Meth. Engng. 101, 744 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Yamasaki, S. Yamanaka, and K. Fujita, Three-dimensional grayscale-free topology optimization using a level-set based r-refinement method, Int. J. Numer. Meth. Engng. 112, 1402 (2017).

    Article  MathSciNet  Google Scholar 

  27. K. Nomura, S. Yamasaki, K. Yaji, H. Bo, A. Takahashi, T. Kojima, and K. Fujita, Topology optimization of conductors in electrical circuit, Struct. Multidisc. Optim. 59, 2205 (2019).

    Article  Google Scholar 

  28. Q. Xia, T. Shi, S. Liu, and M. Y. Wang, A level set solution to the stress-based structural shape and topology optimization, Comput. Struct. 90–91, 55 (2012).

    Article  Google Scholar 

  29. Q. Xia, and T. Shi, Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method, Comput. Methods Appl. Mech. Eng. 311, 56 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Li, T. Shi, and Q. Xia, Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigen-frequency of vibration, Adv. Eng. Software 107, 59 (2017).

    Article  Google Scholar 

  31. W. Zhang, J. Chen, X. Zhu, J. Zhou, D. Xue, X. Lei, and X. Guo, Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Eng. 322, 590 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Zhang, Z. Xiao, C. Liu, Y. Mei, S. Youn, and X. Guo, A scaled boundary finite element based explicit topology optimization approach for three-dimensional structures, Int. J. Numer. Methods Eng. 121, 4878 (2020).

    Article  MathSciNet  Google Scholar 

  33. W. Khan, W. Siraj-ul-Islam, and B. Ullah, Structural optimization based on meshless element free Galerkin and level set methods, Comput. Methods Appl. Mech. Eng. 344, 144 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  34. Z. Luo, N. Zhang, W. Gao, and H. Ma, Structural shape and topology optimization using a meshless Galerkin level set method, Int. J. Numer. Meth. Engng. 90, 369 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, Int. J. Numer. Meth. Engng. 37, 229 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  36. X. Zhang, X. Liu, M. W. Lu, and Y. Chen, Imposition of essential boundary conditions by displacement constraint equations in meshless methods, Commun. Numer. Meth. Engng. 17, 165 (2001).

    Article  MATH  Google Scholar 

  37. M. P. Bendsoe, and O. Sigmund, Topology Optimization: Theory, Methods and Applications. (Springer, Berlin, 2004).

    Book  MATH  Google Scholar 

  38. C. Liu, Y. Zhu, Z. Sun, D. Li, Z. Du, W. Zhang, and X. Guo, An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization, Struct. Multidisc. Optim. 58, 2455 (2018).

    Article  MathSciNet  Google Scholar 

  39. K. Svanberg, The method of moving asymptotes—A new method for structural optimization, Int. J. Numer. Meth. Engng. 24, 359 (1987).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Liu  (刘畅) or Xu Guo  (郭旭).

Additional information

This work was supported by the National Natural Science Foundation (Grant Nos. 11821202, 11732004, 12002077 and 12002073), the National Key Research and Development Plan (Grant No. 2020YFB1709401), the Fundamental Research Funds for the Central Universities (Grant Nos. DUT21-RC(3)076 and DUT20RC(3)020), the Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 2021-BS-063), and 111 Project (Grant No. B14013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, C., Du, Z. et al. A meshless moving morphable component-based method for structural topology optimization without weak material. Acta Mech. Sin. 38, 421445 (2022). https://doi.org/10.1007/s10409-022-09021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09021-8

Keywords

Navigation