Skip to main content
Log in

CG-enriched concurrent multi-scale modeling of dynamic surface interactions between discrete particles and solid continua

粗粒化强化有限-离散元多尺度耦合方法在颗粒-连续体表面动态 作用问题上的应用

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The interaction between granular materials and deformable structures is relevant to many industries, such as mining, construction, and powder processing. Surface coupling between the discrete (DEM) and the finite element method (FEM) is commonly used to numerically describe particle-continuum interactions. Using a recently developed “surface-coupling” method, enriched by coarse graining, a micro-macro transition technique to extract continuum fields from discrete particle data, we study the time evolution of linear momenta and energies in various particle-continuum systems and their dependencies on the coarse-graining (CG) width, the support of the smoothing kernel. Via three numerical examples including (1) a dense granular flow impacting on a flexible obstacle, (2) a viscoelastic cube bouncing and resting on a frictional granular bed, and (3) a monolayer of particles flowing on a cantilever, we show that CG-enriched surface coupling not only leads to more accurate predictions but also reduces excess energies numerically generated by the coupling method, and CG is more effective as the particle-structure interaction becomes dynamic. By varying the CG width, we observe stronger attenuation, decreasing the magnitudes of high-frequency oscillations, facilitating stress relaxation in dissipative coupled systems, and that the identification of the optimal CG width is indeed problem-dependent.

摘要

颗粒材料和可变形结构之间的相互作用与采矿、施工、粉末加工等许多工业过程相关. 离散(DEM)和有限元法(FEM)之间的 表面耦合通常用来模拟颗粒材料与连续体介质间的相互作用. 本文使用最新提出“广义表面耦合”方法, 通过粗粒化(CG)强化连续物理 场从离散颗粒尺度数据中的提取, 在离散-连续体接触面实现微观-宏观过渡. 本文着重研究了颗粒-连续耦合系统中动量和能量的时间 演化及其在CG宽度(即平滑内核有效范围)上的依赖性. 通过三个数值算例, 包括(1)密实颗粒流撞击柔性障碍物, (2)粘弹性立方体坠落 并静止于颗粒床, (3)悬臂梁表面受重力作用滑动继而使梁弯曲的颗粒流, 证明了CG强化的FEM-DEM表面耦合可以使数值结果更加准 确, 并减少耦合系统中的多余能量. 通过比较三个计算实例, 本文发现随着颗粒-连续体相互作用从静态到动态过度, CG强化面耦合方 法的优势更加明显. 随着CG宽度增加, 耦合系统中过剩能量的衰减越强, 高频振荡的振幅也越小, 从而促进耦合系统中的应力松弛过 程. 但是最佳CG宽度的选择仍然取决于具体的耦合问题.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Richard, M. Nicodemi, R. Delannay, P. Ribiére, and D. Bideau, Slow relaxation and compaction of granular systems, Nat. Mater 4, 121 (2005).

    Article  Google Scholar 

  2. H. Cheng, H. Yamamoto, K. Thoeni, and Y. Wu, An analytical solution for geotextile-wrapped soil based on insights from DEM analysis, Geotextiles Geomembranes 45, 361 (2017).

    Article  Google Scholar 

  3. A. Elmekati, and U. E. Shamy, A practical co-simulation approach for multiscale analysis of geotechnical systems, Comput. Geotech. 37, 494 (2010).

    Article  Google Scholar 

  4. C. J. Coetzee, A. H. Basson, and P. A. Vermeer, Discrete and continuum modelling of excavator bucket filling, J. Terramech. 44, 177 (2007).

    Article  Google Scholar 

  5. A. Daniilidis, L. Doddema, and R. Herber, Risk assessment of the Groningen geothermal potential: From seismic to reservoir uncertainty using a discrete parameter analysis, Geothermics 64, 271 (2016).

    Article  Google Scholar 

  6. K. B. Sautter, Modeling and Simulation of Flexible Protective Structures by Coupling Particle and Finite Element Methods, Dissertation for Doctoral Degree (Technische Universität München, München, 2022).

    Google Scholar 

  7. P. A. Cundall, and O. D. L. Strack, A discrete numerical model for granular assemblies, Géotechnique 29, 47 (1979).

    Article  Google Scholar 

  8. E. Oñate, and J. Rojek, Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Comput. Methods Appl. Mech. Eng. 193, 3087 (2004).

    Article  MATH  Google Scholar 

  9. P. Villard, B. Chevalier, B. Le Hello, and G. Combe, Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic, Comput. Geotech. 36, 709 (2009).

    Article  Google Scholar 

  10. M. Michael, F. Vogel, and B. Peters, DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain, Comput. Methods Appl. Mech. Eng. 289, 227 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Cheng, A. R. Thornton, S. Luding, A. L. Hazel, and T. Weinhart, Concurrent multi-scale modeling of granular materials: Role of coarse-graining in FEM-DEM coupling, Comput. Methods Appl. Mech. Eng. 403, 115651 (2023).

    Article  MathSciNet  Google Scholar 

  12. I. Goldhirsch, Stress, stress asymmetry and couple stress: From discrete particles to continuous fields, Granular Matter 12, 239 (2010).

    Article  MATH  Google Scholar 

  13. T. Weinhart, R. Hartkamp, A. R. Thornton, and S. Luding, Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface, Phys. Fluids 25, 070605 (2013).

    Article  Google Scholar 

  14. T. Weinhart, L. Orefice, M. Post, M. P. van Schrojenstein Lantman, I. F. C. Denissen, D. R. Tunuguntla, J. M. F. Tsang, H. Cheng, M. Y. Shaheen, H. Shi, P. Rapino, E. Grannonio, N. Losacco, J. Barbosa, L. Jing, J. E. Alvarez Naranjo, S. Roy, W. K. den Otter, and A. R. Thornton, Fast, flexible particle simulations—An introduction to MercuryDPM, Comput. Phys. Commun. 249, 107129 (2020).

    Article  MathSciNet  Google Scholar 

  15. S. Luding, Cohesive, frictional powders: Contact models for tension, Granular Matter 10, 235 (2008).

    Article  MATH  Google Scholar 

  16. J. C. Simo, On the computational significance of the intermediate configuration and hyperelastic stress relations in finite deformation elastoplasticity, Mech. Mater. 4, 439 (1985).

    Article  Google Scholar 

  17. O. Zienkiewicz, R. Taylor, and D. Fox, The Finite Element Method for Solid and Structural Mechanics (Elsevier, Oxford, 2014).

    MATH  Google Scholar 

  18. T. Weinhart, A. R. Thornton, S. Luding, and O. Bokhove, Closure relations for shallow granular flows from particle simulations, Granular Matter 14, 531 (2012).

    Article  Google Scholar 

  19. W. Gao, J. Wang, S. Yin, and Y. T. Feng, A coupled 3D isogeometric and discrete element approach for modeling interactions between structures and granular matters, Comput. Methods Appl. Mech. Eng. 354, 441 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. D. H. Tran, M. A. Meguid, and L. E. Chouinard, A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions, Geotextiles Geomembranes 37, 1 (2013).

    Article  Google Scholar 

  21. Y. Feng, A generic energy-conserving discrete element modeling strategy for concave particles represented by surface triangular meshes, Int. J. Numer. Methods Eng. 122, 2581 (2021).

    Article  MathSciNet  Google Scholar 

  22. Y. T. Feng, An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework and general contact model, Comput. Methods Appl. Mech. Eng. 373, 113454 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. T. Feng, and Y. Tan, The Minkowski overlap and the energy-conserving contact model for discrete element modeling of convex nonspherical particles, Int. J. Numer. Methods Eng. 122, 6476 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Hongyang Cheng acknowledges funding from the Sectorplan Béta & Techniek of the Dutch Government. Thomas Weinhart acknowledges funding from the NWO-TTW project No.16604 Virtual Prototyping of Particulate Processes (ViPr)—Design and Optimisation via Multi-scale Modelling and Rapid Prototyping. This work made use of the Dutch national e-infrastructure with the support of the SURF Cooperative (Grant No. EINF-3381). We thank Anthony R. Thornton for the initial discussions on the implementation of FEM-DEM coupling in oomph-lib and Mercury-DPM and Mohammed. B. A. Hassan for defining the problem of deformable objects impacting granular beds, as part of his EngD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyang Cheng  (程宏旸).

Additional information

Author contributions

Hongyang Cheng contributed to the conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, resources, software, validation, visualization, writing of the original draft, and writing-review and editing. Stefan Luding contributed to the conceptualization, methodology, visualization, writing-review and editing. Thomas Weinhart contributed to the conceptualization, methodology, visualization, software, writing-review and editing, project administration, and funding acquisition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Luding, S. & Weinhart, T. CG-enriched concurrent multi-scale modeling of dynamic surface interactions between discrete particles and solid continua. Acta Mech. Sin. 39, 722218 (2023). https://doi.org/10.1007/s10409-022-22218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22218-x

Navigation