Skip to main content
Log in

Nonlinear dynamic stability analysis of imperfect architected cellular sandwich plate under impact loading

冲击载荷下含缺陷蜂窝夹层板的非线性动态稳定性分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Architected cellular structures are designed by tessellating unit cells in a periodic fashion. The optimisation of the cellular structures ensures their compatibility with engineering applications in which mechanical properties are highly customised to meet a specific requirement while preserving considerable lightweight. The present paper aims to explore the dynamic buckling behaviour of the imperfect sandwich plate with an architected cellular core. The homogeneous method is adopted to obtain the effective material properties of the cellular core with various unit cell configurations. Different impact loading cases, namely, the sinusoidal, exponential, rectangular, and damping impulses, have been simulated. Meanwhile, two common types of boundary restraints (i.e., simply supported and clamped) are embraced in the investigation. The governing equation system is built based on the first-order shear deformation plate theory with the Von Karman nonlinearity and then resolved by the Galerkin and the fourth-order Runge-Kutta methods. Volmir criterion is employed to determine the critical dynamic buckling load. Several validations are made before conducting systematic numerical experiments. The correlations between the dynamic buckling load of the sandwich model and a number of crucial factors, such as the geometry and relative density of the cell unit, the initial imperfection and boundary conditions of the sandwich plate, elastic foundation coefficients, and damping, are discussed. In addition, the load-to-weight ratio is shown, which will aid in determining the optimal unit cell design and relative density for light-weighting a specific technical component.

摘要

蜂窝结构具有周期性拓扑分布的特征. 定制蜂窝结构可在满足特定工程要求的机械性能的同时保持其轻重量的优点. 本文旨在 探索在冲击荷载作用下, 具有不同晶格结构的含缺陷蜂窝夹层板的动态屈曲行为. 本文采用均质法来获得不同晶格结构配置的蜂窝芯 层的有效材料特性, 并采用正弦波、指数、矩形和阻尼脉冲来模拟不同的冲击载荷情况. 同时, 研究中考虑了两种常见的边界约束类 型, 即简单支撑和夹持边界. 基于冯·卡门非线性理论和一阶剪切变形板理论建立控制方程, 然后使用Galerkin方法和四阶Runge-Kutta 方法进行求解, 并进一步使用Volmir准则来确定结构的临界动态屈曲载荷. 本文讨论了晶格结构形状、蜂窝芯相对密度、初始几何缺 陷、边界条件、弹性基础系数和结构阻尼对夹层板模型的动态屈曲载荷的影响. 此外, 文章还给出了研究模型的载荷-重量比, 有助于 确定最佳晶格单元设计和蜂窝结构相对密度, 可服务于工程中特定技术构件的轻量化.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mao, N. Zhao, Y. Liang, and H. Bai, Mechanically efficient cellular materials inspired by cuttlebone, Adv. Mater. 33, 2007348 (2021).

    Article  Google Scholar 

  2. L. J. Gibson, and M. F. Ashby, Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  3. H. Niknam, A. H. Akbarzadeh, D. Rodrigue, and D. Therriault, Architected multi-directional functionally graded cellular plates, Mater. Des. 148, 188 (2018).

    Article  Google Scholar 

  4. M. Benedetti, A. du Plessis, R. O. Ritchie, M. Dallago, S. M. J. Razavi, and F. Berto, Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication, Mater. Sci. Eng.-R-Rep. 144, 100606 (2021).

    Article  Google Scholar 

  5. L. J. Gibson, Cellular Solids, MRS Bull. 28, 270 (2003).

    Article  Google Scholar 

  6. I. G. Masters, and K. E. Evans, Models for the elastic deformation of honeycombs, Compos. Struct. 35, 403 (1996).

    Article  Google Scholar 

  7. A. H. Akbarzadeh, J. W. Fu, Z. T. Chen, and L. F. Qian, Dynamic eigenstrain behavior of magnetoelastic functionally graded cellular cylinders, Compos. Struct. 116, 404 (2014).

    Article  Google Scholar 

  8. Y. Wang, H. Xu, and D. Pasini, Multiscale isogeometric topology optimization for lattice materials, Comput. Methods Appl. Mech. Eng. 316, 568 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Niu, J. Yan, and G. Cheng, Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency, Struct. Multidisc. Optim. 39, 115 (2009).

    Article  Google Scholar 

  10. Y. M. Xie, and G. P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49, 885 (1993).

    Article  Google Scholar 

  11. O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidisc. Optim. 21, 120 (2001).

    Article  Google Scholar 

  12. N. Wei, H. Ye, X. Zhang, W. Wang, and Y. Sui, Lightweight topology optimization of graded lattice structures with displacement constraints based on an independent continuous mapping method, Acta Mech. Sin. 38, 421352 (2022).

    Article  MathSciNet  Google Scholar 

  13. Z. Chen, G. Wen, H. Wang, L. Xue, and J. Liu, Multi-resolution nonlinear topology optimization with enhanced computational efficiency and convergence, Acta Mech. Sin. 38, 421299 (2022).

    Article  MathSciNet  Google Scholar 

  14. S. Arabnejad, and D. Pasini, Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods, Int. J. Mech. Sci. 77, 249 (2013).

    Article  Google Scholar 

  15. B. Hassani, and E. Hinton, A review of homogenization and topology optimization I—homogenization theory for media with periodic structure, Comput. Struct. 69, 707 (1998).

    Article  MATH  Google Scholar 

  16. B. Hassani, and E. Hinton, A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations, Comput. Struct. 69, 719 (1998).

    Article  Google Scholar 

  17. E. Brun, J. Vicente, F. Topin, R. Occelli, and M. J. Clifton, Micro-structure and transport properties of cellular materials: Representative volume element, Adv. Eng. Mater. 11, 805 (2009).

    Article  Google Scholar 

  18. T. Liu, Z. C. Deng, and T. J. Lu, Structural modeling of sandwich structures with lightweight cellular cores, Acta Mech. Sin. 23, 545 (2007).

    Article  MATH  Google Scholar 

  19. J. Galos, R. Das, M. P. Sutcliffe, and A. P. Mouritz, Review of balsa core sandwich composite structures, Mater. Des. 221, 111013 (2022).

    Article  Google Scholar 

  20. L. Chica, and A. Alzate, Cellular concrete review: New trends for application in construction, Constr. Build. Mater. 200, 637 (2019).

    Article  Google Scholar 

  21. A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, Review of advanced composite structures for naval ships and submarines, Compos. Struct. 53, 21 (2001).

    Article  Google Scholar 

  22. J. Bühring, M. Nuño, and K. U. Schröder, Additive manufactured sandwich structures: Mechanical characterization and usage potential in small aircraft, Aerosp. Sci. Tech. 111, 106548 (2021).

    Article  Google Scholar 

  23. N. Soro, E. G. Brodie, A. Abdal-hay, A. Q. Alali, D. Kent, and M. S. Dargusch, Additive manufacturing of biomimetic Titanium-Tantalum lattices for biomedical implant applications, Mater. Des. 218, 110688 (2022).

    Article  Google Scholar 

  24. A. du Plessis, S. M. J. Razavi, M. Benedetti, S. Murchio, M. Leary, M. Watson, D. Bhate, and F. Berto, Properties and applications of additively manufactured metallic cellular materials: A review, Prog. Mater. Sci. 125, 100918 (2022).

    Article  Google Scholar 

  25. H. Yazdani Sarvestani, A. H. Akbarzadeh, H. Niknam, and K. Hermenean, 3D printed architected polymeric sandwich panels: Energy absorption and structural performance, Compos. Struct. 200, 886 (2018).

    Article  Google Scholar 

  26. B. Chen, Y. Jia, F. Narita, C. Wang, and Y. Shi, Multifunctional cellular sandwich structures with optimised core topologies for improved mechanical properties and energy harvesting performance, Compos. Part B-Eng. 238, 109899 (2022).

    Article  Google Scholar 

  27. P. Hung, K. Lau, L. Cheng, J. Leng, and D. Hui, Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications, Compos. Part B-Eng. 133, 86 (2018).

    Article  Google Scholar 

  28. D. Karagiozova, and M. Alves, Stress waves in layered cellular materials—Dynamic compaction under axial impact, Int. J. Mech. Sci. 101-102, 196 (2015).

    Article  Google Scholar 

  29. R. P. Bohara, S. Linforth, T. Nguyen, A. Ghazlan, and T. Ngo, Dualmechanism auxetic-core protective sandwich structure under blast loading, Compos. Struct. 299, 116088 (2022).

    Article  Google Scholar 

  30. H. Feng, W. Huang, S. Deng, C. Yin, P. Wang, and J. Liu, Dynamic fluid-structure interaction of graded foam core sandwich plates to underwater blast, Int. J. Mech. Sci. 231, 107557 (2022).

    Article  Google Scholar 

  31. D. N. Fang, Y. L. Li, and H. Zhao, On the behaviour characterization of metallic cellular materials under impact loading, Acta Mech. Sin. 26, 837 (2010).

    Article  MATH  Google Scholar 

  32. Q. Li, X. Zhi, and F. Fan, Dynamic crushing of uniform and functionally graded origami-inspired cellular structure fabricated by SLM, Eng. Struct. 262, 114327 (2022).

    Article  Google Scholar 

  33. Y. Yang, Q. Qin, J. Zheng, and T. J. Wang, Uniaxial crushing of sandwich plates with continuously density-graded cellular cores subjected to impulsive loading, Eur. J. Mech.-A Solids 90, 104361 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Fíla, P. Koudelka, J. Falta, P. Zlámal, V. Rada, M. Adorna, S. Bronder, and O. Jiroušek, Dynamic impact testing of cellular solids and lattice structures: Application of two-sided direct impact Hopkinson bar, Int. J. Impact Eng. 148, 103767 (2021).

    Article  Google Scholar 

  35. Q. Li, D. Wu, X. Chen, L. Liu, Y. Yu, and W. Gao, Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation, Int. J. Mech. Sci. 148, 596 (2018).

    Article  Google Scholar 

  36. N. V. Nguyen, H. Nguyen-Xuan, T. N. Nguyen, J. Kang, and J. Lee, A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement, Compos. Struct. 259, 113213 (2021).

    Article  Google Scholar 

  37. N. D. Dat, T. Q. Quan, and N. D. Duc, Nonlinear thermal dynamic buckling and global optimization of smart sandwich plate with porous homogeneous core and carbon nanotube reinforced nanocomposite layers, Eur. J. Mech.-A Solids 90, 104351 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Dong, Y. Tang, Y. F. Zhao, A 149 line homogenization code for three-dimensional cellular materials written in MATLAB, J. Eng. Mater. Technol. Trans. 141, 011005 (2019).

    Article  Google Scholar 

  39. Q. Li, Y. Tian, D. Wu, W. Gao, Y. Yu, X. Chen, and C. Yang, The nonlinear dynamic buckling behaviour of imperfect solar cells subjected to impact load, Thin-Walled Struct. 169, 108317 (2021).

    Article  Google Scholar 

  40. Y. Tian, Q. Li, D. Wu, X. Chen, and W. Gao, Nonlinear dynamic stability analysis of clamped and simply supported organic solar cells via the third-order shear deformation plate theory, Eng. Struct. 252, 113616 (2022).

    Article  Google Scholar 

  41. T. Kubiak, Criteria of dynamic buckling estimation of thin-walled structures, Thin-Walled Struct. 45, 888 (2007).

    Article  Google Scholar 

  42. Y. Xiang, C. M. Wang, and S. Kitipornchai, Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations, Int. J. Mech. Sci. 36, 311 (1994).

    Article  MATH  Google Scholar 

  43. M. Sobhy, Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions, Compos. Struct. 99, 76 (2013).

    Article  Google Scholar 

  44. T. Weller, H. Abramovich, and R. Yaffe, Dynamic buckling of beams and plates subjected to axial impact, Comput. Struct. 32, 835 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by an Australian Government Research Training Program Scholarship and Australian Research Council Projects (Grant Nos. IH210100048, IH150100006, IH200100010, and DP210101353).

Author information

Authors and Affiliations

Authors

Contributions

Qingya Li and Weizhe Tian proposed the presented idea in discussions with Di Wu and Wei Gao. Qingya Li developed the theoretical formula derivation and performed the numerical computations on the manuscript. Weizhe Tian and Di Wu verified the numerical results by comparing the current results with published literature. Qingya Li, Weizhe Tian, Di Wu, and Wei Gao contributed to interpreting the results. Qingya Li and Weizhe Tian took the lead in writing the manuscript. Di Wu and Wei Gao supervised the development of the work. Qingya Li, Weizhe Tian, Di Wu, and Wei Gao revised and edited the final version.

Corresponding authors

Correspondence to Di Wu  (吴迪) or Wei Gao  (高伟).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Tian, W., Wu, D. et al. Nonlinear dynamic stability analysis of imperfect architected cellular sandwich plate under impact loading. Acta Mech. Sin. 39, 722333 (2023). https://doi.org/10.1007/s10409-022-22333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22333-x

Navigation