Skip to main content
Log in

Effect of pH and Metal Ions on the Decomposition Rate of S-nitrosocysteine

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

S-nitrosothiols (RSNOs) have many biological functions including platelet deactivation, immunosupression, neurotransmission, and host defense. Most of the functions are attributed to nitric oxide (NO) release during S-nitrosothiol decomposition. As the simplest biologically occurring S-nitrosothiol, S-nitrosocysteine (CySNO) has been widely used as an NO donor and has also been incorporated into biomedical polymers. Knowledge of the CySNO decomposition rate is important for assessing the impact of CySNO on various bioengineering applications or biological systems. In this work, spectrophotometer measurements of CySNO decomposition in the presence of metal ions showed that the decomposition rate is highly susceptible to the pH. The maximum decomposition occurs near physiological pH (near 7.4) while in the acidic (pH < 6) and alkaline (pH > 9) condition CySNO is very stable. This demonstrates that blood provides an optimized environment for the decomposition of CySNO leading to the release of NO. The CySNO decomposition rate can also be affected by buffers with different purity levels in the presence and absence of metal ion chelators—although all buffers show the same pH phenomenon of maximizing near physiological pH. An equilibrium model of metal ions as a function of pH provides a plausible explanation for the pH dependence on the experimental decomposition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

RSNO:

S-nitrosothiol

NO:

nitric oxide

CySNO:

S-nitrosocysteine

AlbSNO:

S-nitrosoalbumin

k :

first-order rate constant

k obs :

observed first-order rate constant

f B :

fraction of metal ion in the form of species B

References

  1. Adam C., Garcia-Rio L., Leis J. R., Ribeiro L. 2005 Nitroso group transfer in S-nitrosocysteine: evidence of a new decomposition pathway for nitrosothiols. J. Org. Chem. 70(16):6353–6361

    Article  PubMed  CAS  Google Scholar 

  2. Al-Sa’Doni H., Ferro A. 2000 S-nitrosothiols: a class of nitric oxide-donor drugs. Clin. Sci. 98(5):507–520

    Article  PubMed  CAS  Google Scholar 

  3. Askew S. C., Barnett J. D., McAninly J., Williams D. L. H. 1995 Catalysis by Cu2+ of nitric oxide release from S-nitrosothiols (RSNO). J. Am. Chem. Soc., Perkin Trans. 2: Phys. Org. Chem. 4:741–745

    Article  Google Scholar 

  4. Beynon, R. J., and J. S. Easterby. Buffer Solutions: The Basics. Oxford: Oxford University Press, 84 pp, 1996

  5. Burg A., Cohen H., Meyerstein D. 2000 The reaction mechanism of nitrosothiols with copper(I). J. Biol. Inorg. Chem. 5(2):213–217

    Article  PubMed  CAS  Google Scholar 

  6. Butler A. R., Williams D. L. H. 1993 The physiological role of nitric oxide. Chem. Soc. Rev. 22(4):233–241

    Article  CAS  Google Scholar 

  7. Cooney, D. Biomedical Engineering Principles: An Introduction to Fluid, Heat, and Mass Transport Processes. New York: M. Dekker, 458 pp, 1976

  8. Dicks A. P., Williams D. L. H. 1996 Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chem. Biol. 3(8):655–659

    Article  PubMed  CAS  Google Scholar 

  9. Duan X., Lewis R. S. 2002 Improved hemocompatibility of cysteine-modified polymers via endogenous nitric oxide. Biomaterials 23(4):1197–1203

    Article  PubMed  CAS  Google Scholar 

  10. Gappa-Fahlenkamp H., Lewis R. S. 2005 Improved hemocompatibility of poly(ethylene terephthalate) modified with various thiol-containing groups. Biomaterials 26(17):3479–3485

    Article  PubMed  CAS  Google Scholar 

  11. Giustarini D., Milzani A., Colombo R., Dalle-Donne I., Rossi R. 2003 Nitric oxide and S-nitrosothiols in human blood. Clin. Chim. Acta 330(1–2):85–98

    Article  PubMed  CAS  Google Scholar 

  12. Hinderling P., Hartmann D. 2005 The pH dependency of the binding of drugs to plasma proteins in man. Ther. Drug Monit. 27(1):71–85

    Article  PubMed  CAS  Google Scholar 

  13. Kelm M. 1999 Nitric oxide metabolism and breakdown. Biochim. Biophys. Acta 1411(2–3):273–289

    PubMed  CAS  Google Scholar 

  14. Kurenny D. E., Moroz L. L., Turner R. W., Sharkey K. A., Barnes S. 1994 Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 13(2):315–324

    Article  PubMed  CAS  Google Scholar 

  15. Mathews W. R., Kerr S. W. 1993 Biological activity of S-nitrosothiols: the role of nitric oxide. J. Pharmacol. Exp. Ther. 267(3):1529–1537

    PubMed  CAS  Google Scholar 

  16. McAninly J., Williams D. L. H., Askew S. C., Butler A. R., Russell C. 1993 Metal ion catalysis in nitrosothiol (RSNO) decomposition. J. Am. Chem. Soc., Chem. Commun. 23:1758–1759

    Article  Google Scholar 

  17. Meyer D. J., Kramer H., Ozer N., Coles B., Ketterer B. 1994 Kinetics and equilibria of S-nitrosothiol—thiol exchange between glutathione, cysteine, penicillamines and serum albumin. FEBS Lett. 345(2–3):177–180

    Article  PubMed  CAS  Google Scholar 

  18. Murayama T., Nomura Y. 1998 The actions of NO in the central nervous system and in thymocytes. Jpn. J. Pharmacol. 76(2):129–139

    Article  PubMed  CAS  Google Scholar 

  19. Palmer D. A., Benezeth P., Simonson J. M. 2004 The solubility of copper oxides around the water/steam cycle. Power Plant Chem. 6(2):81–88

    CAS  Google Scholar 

  20. Pietraforte D., Mallozzi C., Scorza G., Minetti M. 1995 Role of thiols in the targeting of S-nitroso thiols to red blood cells. Biochemistry 34(21):7177–7185

    Article  PubMed  CAS  Google Scholar 

  21. Ramamurthi A. L., Lewis R. S. 2000 Influence of agonist, shear rate, and perfusion time on nitric oxide inhibition of platelet deposition. Ann. Biomed. Eng. 28(2):174–181

    Article  PubMed  CAS  Google Scholar 

  22. Richards C. D., Metcalfe J. C., Smith G. A., Hesketh T. R. 1984 Changes in free-calcium levels and pH in synaptosomes during transmitter release. Biochim. Biophys. Acta Mol. Cell. Res. 803(4):215–220

    Article  CAS  Google Scholar 

  23. Richardson G., Benjamin N. 2002 Potential therapeutic uses for S-nitrosothiols. Clin. Sci. 102(1):99–105

    Article  PubMed  CAS  Google Scholar 

  24. Richie J. P. Jr., Abraham P., Leutzinger Y. 1996 Long-term stability of blood glutathione and cysteine in humans. Clin. Chem. 42(7):1100–1105

    PubMed  CAS  Google Scholar 

  25. Scorza G., Pietraforte D., Minetti M. 1996 Role of ascorbate and protein thiols in the release of nitric oxide from S-nitroso-albumin and S-nitroso-glutathione in human plasma. Free Radical Biol. Med. 22(4):633–642

    Article  Google Scholar 

  26. Smith J. N., Dasgupta T. P. 2000 Kinetics and mechanism of the decomposition of S-nitrosoglutathione by—ascorbic acid and copper ions in aqueous solution to produce nitric oxide. Nitric Oxide 4(1):57–66

    Article  PubMed  CAS  Google Scholar 

  27. Stamler J. S., Toone E. J. 2002 The decomposition of thionitrites. Curr. Opin. Chem. Biol. 6(6):779–785

    Article  PubMed  CAS  Google Scholar 

  28. Stuesse D. C., Giraud G. D., Vlessis A. A., Starr A., Trunkey D. D. 2001 Hemodynamic effects of S-nitrosocysteine, an intravenous regional vasodilator. J. Thorac. Cardiovasc. Surg. 122(2):371–377

    Article  PubMed  CAS  Google Scholar 

  29. Swift H. R., Williams D. L. H. 1997 Decomposition of S-nitrosothiols by mercury(II) and silver salts. J. Am. Chem. Soc., Perkin Trans. 2: Phys. Org. Chem. 10:1933–1935

    Article  Google Scholar 

  30. Tullett J. M., Rees D. D., Shuker D. E. G., Gescher A. 2001 Lack of correlation between the observed stability and pharmacological properties of S-nitroso derivatives of glutathione and cysteine-related peptides. Biochem. Pharmacol. 62(9):1239–1247

    Article  PubMed  CAS  Google Scholar 

  31. Vanin A. F., Malenkova I. V., Serezhenkov V. A. 1997 Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies. Nitric Oxide 1(3):191–203

    Article  PubMed  CAS  Google Scholar 

  32. Vanin A. F., Papina A. A., Serezhenkov V. A., Koppenol W. H. 2004 The mechanisms of S-nitrosothiol decomposition catalyzed by iron. Nitric Oxide 10(2):60–73

    Article  PubMed  CAS  Google Scholar 

  33. Williams D. L. H. 1996 S-nitrosothiols and role of metal ions in decomposition to nitric oxide. Methods Enzymol. 268:299–308

    Article  PubMed  CAS  Google Scholar 

  34. Williams D. L. H. 1999 The chemistry of S-nitrosothiols. Acc. Chem. Res. 32(10):869–876

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Oklahoma Center for the Advancement of Science and Technology to R.S.L. (HN6-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy S. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Lewis, R.S. Effect of pH and Metal Ions on the Decomposition Rate of S-nitrosocysteine. Ann Biomed Eng 35, 1554–1560 (2007). https://doi.org/10.1007/s10439-007-9327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9327-5

Keywords

Navigation