Skip to main content

Advertisement

Log in

Seizure Detection Using Seizure Probability Estimation: Comparison of Features Used to Detect Seizures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper analyses seizure detection features and their combinations using a probability-based scalp EEG seizure detection framework developed by Marc Saab and Jean Gotman. Our method was evaluated on 525 h of data, including 88 seizures in 21 patients. The individual performances of the three features used by Saab and Gotman were compared to six alternative features, and combinations of these nine features were analyzed in order to find a superior detector. On a testing set with the combination of their three features, Saab and Gotman reported a sensitivity of 0.78, a false positive rate of 0.86/h, and a median detection delay of 9.8 s. Based on 10-fold cross-validation the testing performance of our implementation of their method achieved a sensitivity of 0.79, a false positive rate of 0.62/h, and a median detection delay of 21.3 s. A detector based on an alternative combination of features achieved sensitivity of 0.81, a false positive rate of 0.60/h, and a median detection delay of 16.9 s. By including filtering techniques, it was possible to achieve performance levels similar to Saab and Gotman using our implementation of their method, although this involved increases in detection delays. Of the seizure detection measures investigated, relative average amplitude, relative power, relative derivative, and coefficent of variation of amplitude provided the best performing combinations. These better-performing features can be employed together to make robust and reliable seizure detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Acir, N., I. Öztura, M. Kuntalp, B. Baklan, and C. Gützelis. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks. IEEE Trans. Biomed. Eng. 52(1):30–40, 2005.

    Article  PubMed  Google Scholar 

  2. Bayes, T. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions, Giving Some Account of the Present Undertakings, Studies and Labours of the Ingenious in Many Considerable Parts of the World 53:370–418, 1763.

    Google Scholar 

  3. Blume, W., and S. Wiebe. “Periodic” seizures. Epilepsia 38(12):1355–1358, 1997.

    Article  CAS  PubMed  Google Scholar 

  4. Burrus, C., R. Gopinath, and H. Guo, editors. Introduction to Wavelets and Wavelet Transforms: A Primer. Englewood Cliffs, NJ: Prentice-Hall, 1998.

    Google Scholar 

  5. Daubechies, I., editor. Ten Lectures on Wavelets. Montepelier, VT: Capital City Press, 1992.

    Google Scholar 

  6. Duda, R., P. Hart, and D. Stork. Pattern Classification. New York, NY: Wiley, 2001.

    Google Scholar 

  7. Feichtinger, M., H. Eder, A. Holl, E. Korner, G. Zmugg, R. Aigner, F. Fazekas, and E. Ott. Automatic and remote controlled ictal spect injection for seizure focus localization by use of a commercial contrast agent application pump. Epilepsia 48(7):1409–1413, 2007.

    Article  PubMed  Google Scholar 

  8. Firpi, H., E. Goodman, and J. Echauz. On prediction of epileptic seizures by means of genetic programming artificial features. Ann. Biomed. Eng. 34(3):515–529, 2006.

    Article  PubMed  Google Scholar 

  9. Firpi, H., E. Goodman, and J. Echauz. Epileptic seizure detection using genetically programmed artificial features. IEEE Trans. Biomed. Eng. 54(2):212–224, 2007.

    Article  PubMed  Google Scholar 

  10. Gabor, A. Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies. Electroencephal. Clin. Neurophysiol. 107:27–32, 1998.

    Article  CAS  Google Scholar 

  11. Ghosh-Dastidar, S., H. Adeli, and N. Dadmehr. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54(9):1545–1551, 2007.

    Article  PubMed  Google Scholar 

  12. Ghosh-Dastidar, S., H. Adeli, and N. Dadmehr. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2):512–518, 2008.

    Article  PubMed  Google Scholar 

  13. Gotman, J. Automatic recognition of epileptic seizures in the EEG. Electroencephal. Clin. Neurophysiol. 54:530–540, 1982.

    Article  CAS  Google Scholar 

  14. Gotman, J. Automatic seizure detection: improvements and evaluation. Electroencephal. Clin. Neurophysiol. 76:317–324, 1990.

    Article  CAS  Google Scholar 

  15. Gotman, J., and P. Gloor. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephal. Clin. Neurophysiol. 49:513–529, 1976.

    Article  Google Scholar 

  16. Gotman, J., J. Ives, and P. Gloor. Frequency content of EEG and EMG at seizure onset: possibility of removal of EMG artifact by digital filtering. Electroencephal. Clin. Neurophysiol. 52(2):626–639, 1981.

    Article  CAS  Google Scholar 

  17. Greene, B., S. Faula, W. Marnanea, G. Lightbodya, I. Korotchikova, and G. Boylan. A comparison of quantitative EEG features for neonatal seizure detection. Clin. Neurophysiol. 119:1248–1261, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Grewal, S., and J. Gotman. An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clin. Neurophysiol. 116:2460–2472, 2005.

    Article  PubMed  Google Scholar 

  19. Guye, M., J. Regis, F. Tamura, M. Wendling, A. Gonigal, P. Chauvel, and F. Bartolomei. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129:1917–1928, 2006.

    Article  PubMed  Google Scholar 

  20. Haas, S., M. Frei, and I. Osorio. Strategies for adapting automated seizure detection algorithms. Med. Eng. Phys. 29:895–909, 2007.

    Article  PubMed  Google Scholar 

  21. Haut, S., S. Shinnar, and S. Moshé. Seizure clustering: risks and outcomes. Epilepsia 41(1):146–149, 2005.

    Article  Google Scholar 

  22. Hilfiker, P., and M. Egli. Detection and evolution of rhythmic components in ictal EEG using short segment spectra and discriminant-analysis. Electroencephal. Clin. Neurophysiol. 82:255–265, 1992.

    Article  CAS  Google Scholar 

  23. Iasemidis, L., D.-S. Shiau, P. Pardalos, W. Chaovalitwongse, K. Narayanan, A. Prasad, K. Tsakalis, P. Carney, and J. Sackellares. Long-term prospective on-line real-time seizure prediction. Clin. Neurophysiol. 116:532–544, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Khan, Y., and J. Gotman. Wavelet-based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114(5):898–908, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Kuhlmann, L., A. Burkitt, M. Cook, K. Fuller, D. Grayden, and I. Mareels. Correlation analysis of seizure detection features. In: 4th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 898–908, 2008.

  26. Lai, A., T. Nelson, A. Halliday, D. Freestone, A. Burkitt, and M. Cook. Synchronisation in intracranial electrical activity recordings from rats with the tetanus toxin model of temporal lobe epilepsy. In: Proceedings of the 22nd Annual Scientific Meeting of the Epilepsy Society of Australia, pp. 36, P57, 2007.

  27. Le Van Quyen, M., J. Martinerie, M. Baulac, F. Varela. Anticipating epileptic seizures in real time by a non-linear analysis of similarity between eeg recordings. NeuroReport 10:2149–2155, 1999.

    Article  CAS  Google Scholar 

  28. Lehnertz, K., and C. Elger. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett. 80:5019–5022, 1998.

    Article  CAS  Google Scholar 

  29. Ocak, H. Automatic detection of epileptic seizures in eeg using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36:2027–2036, 2009.

    Article  Google Scholar 

  30. Osorio, I., M. Frei, J. Giftakis, T. Peters, J. Ingram, M. Turnbull, M. Herzog, M. Rise, S. Schaffner, R. Wennberg, T. Walczak, M. Risinger, and C. Ajmone-Marsan. Performance reassessment of a real-time seizure-detection algorithm for long ECoG series. Epilepsia 43(12):1522–1535, 2002.

    Article  PubMed  Google Scholar 

  31. Osorio, I., M. Frei, and S. Wilkinson. Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia 39(6):615–627, 1998.

    Article  CAS  PubMed  Google Scholar 

  32. Päivinen, N., S. Lammi, A. Pitkänen, J. Nissinen, M. Penttonen, and T. Grönfors. Epileptic seizure detection: a nonlinear viewpoint. Comp. Meth. Prog. Biomed. 79:151–159, 2005.

    Article  Google Scholar 

  33. Pauri, F., F. Pierelli, G. Chartrian, and W. Erdly. Long-term EEG-video-audio monitoring: computer detection of focal EEG seizure patterns. Electroencephal. Clin. Neurophysiol. 82:1–9, 1992.

    Article  CAS  Google Scholar 

  34. Proakis, J., and D. Manolakis. Digital Signal Processing: Principles, Algorithms and Applications, 3rd edn. Upper Saddle River, NJ: Prentice-Hall, 1996.

    Google Scholar 

  35. Qu, H., and J. Gotman. A seizure warning system for long-term epilepsy monitoring. Neurology 45(12):2250–2254, 1995.

    CAS  PubMed  Google Scholar 

  36. Rabiner, L., and B. Gold. Theory and Application of Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

    Google Scholar 

  37. Rangayyan, R. Biomedical Signal Analysis: A Case-Study Approach. IEEE Press Series on Biomedical Engineering. New York, NY: Wiley, 2002.

    Google Scholar 

  38. Rosso, O., M. Martin, and A. Plastino. Brain electrical activity analysis using wavelet-based informational tools. Physica A 313(3–4):587–608, 2002.

    Article  CAS  Google Scholar 

  39. Saab, M., and J. Gotman. A system to detect the onset of epileptic seizures in scalp EEG. Clin. Neurophysiol. 116:427–442, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Schindler, K., H. Leung, C. Elger, and K. Lehnertz. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130:65–77, 2007.

    Article  PubMed  Google Scholar 

  41. Schuyler, R., A. White, K. Staley, and J. Krzysztof. Epileptic seizure detection: identification of ictal and pre-ictal states using rbf networks with wavelet-decomposed eeg data. IEEE EMBS Mag. March/April:74–81, 2007.

  42. Shoeb, A., H. Edwards, J. Connolly, B. Bourgeois, S. Treves, and J. Guttag. Patient-specific seizure onset detection. Epil. Beh. 5:483–498, 2004.

    Article  Google Scholar 

  43. Srinivasan, V., C. Eswaran, and N. Sriraam. Approximate entropy-based epileptic eeg detection using artificial neural networks. IEEE Trans. Biomed. Eng. 11(3):288–295, 2007.

    Google Scholar 

  44. Tezel, G., and Y. Özbay. A new approach for epileptic seizure detection using adaptive neural network. Expert Syst. Appl. 36:172–180, 2009.

    Article  Google Scholar 

  45. Varsavsky, A., and I. Mareels. Patient un-specific detection of epileptic seizures through changes in variance. In: Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th Annual International Conference of the IEEE, pp. 3747–3750, 2006.

  46. Wilson, S. Algorithm architectures for patient dependent seizure detection. Clin. Neurophysiol. 117(6):1204–1216, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an Australian Research Council Linkage Project Grant (LP0560684), The Bionic Ear Institute and St. Vincent’s Hospital Melbourne. We are grateful for the EEG data provided by the patients, and to the St. Vincent’s Hospital Melbourne Neurophysiology Clinic for collecting the data. EEG data collection was approved by the St. Vincent’s Hospital Melbourne Ethics Committee. We also thank Michael Eager for helping to format the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levin Kuhlmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (693 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlmann, L., Burkitt, A.N., Cook, M.J. et al. Seizure Detection Using Seizure Probability Estimation: Comparison of Features Used to Detect Seizures. Ann Biomed Eng 37, 2129–2145 (2009). https://doi.org/10.1007/s10439-009-9755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9755-5

Keywords

Navigation