Skip to main content
Log in

Purkinje-mediated Effects in the Response of Quiescent Ventricles to Defibrillation Shocks

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In normal cardiac function, orderly activation of the heart is facilitated by the Purkinje system (PS), a specialized network of fast-conducting fibers that lines the ventricles. Its role during ventricular defibrillation remains unelucidated. Physical characteristics of the PS make it a poor candidate for direct electrical observation using contemporary experimental techniques. This study uses a computer modeling approach to assess contributions by the PS to the response to electrical stimulation. Normal sinus rhythm was simulated and epicardial breakthrough sites were distributed in a manner consistent with experimental results. Defibrillation shocks of several strengths and orientations were applied to quiescent ventricles, with and without PS, and electrical activation was analyzed. All shocks induced local polarizations in PS branches parallel to the field, which led to the rapid spread of excitation through the network. This produced early activations at myocardial sites where tissue was unexcited by the shock and coupled to the PS. Shocks along the apico-basal axis of the heart resulted in a significant abbreviation of activation time when the PS was present; these shocks are of particular interest because the fields generated by internal cardioverter defibrillators tend to have a strong component in the same direction. The extent of PS-induced changes, both temporal and spatial, was constrained by the amount of shock-activated myocardium. Increasing field strength decreased the transmission delay between PS and ventricular tissue at Purkinje-myocardial junctions (PMJs), but this did not have a major effect on the organ-level response. Weaker shocks directly affect a smaller volume of myocardial tissue but easily excite the PS, which makes the PS contribution to far field excitation more substantial than for stronger shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adgey, A. A. J., M. S. Spence, and S. J. Walsh. Theory and practice of defibrillation: (2) defibrillation for ventricular fibrillation. Heart 91:118–125, 2005.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, C., N. Trayanova, and K. Skouibine. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization. J. Cardiovasc. Electrophysiol. 11:1386–1396, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Ashihara, T., and N. Trayanova. Asymmetry in membrane responses to electric shocks: insights from bidomain simulations. Biophys. J. 87:2271–2282, 2004.

    Article  CAS  PubMed  Google Scholar 

  4. Aslanidi, O. V., P. Stewart, M. R. Boyett, and H. Zhang. Optimal velocity and safety of discontinuous conduction through the heterogeneous Purkinje-ventricular junction. Biophys. J. 97:20–39, 2009.

    Article  CAS  PubMed  Google Scholar 

  5. Azarov, J. E., D. N. Shmakov, V. A. Vityazev, I. M. Roshchevskaya, N. V. Arteyeva, S. N. Kharin, and M. P. Roshchevsky. Ventricular repolarization pattern under heart cooling in the rabbit. Acta Physiol. (Oxf) 193:129–138, 2008.

    Article  CAS  Google Scholar 

  6. Berenfeld, O., and J. Jalife. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ. Res. 82:1063–1077, 1998.

    CAS  PubMed  Google Scholar 

  7. Cabo, C., and R. C. Barr. Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue. Ann. Biomed. Eng. 21:633–644, 1993.

    Article  CAS  PubMed  Google Scholar 

  8. Coghlan, H., A. Coghlan, G. Buckberg, and J. Cox. The electrical spiral of the heart: its role in the helical continuum. The hypothesis of the anisotropic conducting matrix. Eur. J. Cardiothorac. Surg. 29:S178–S187, 2006.

    Article  PubMed  Google Scholar 

  9. DeBruin, K., and W. Krassowska. Modeling electroporation in a single cell, I. Effects of field strength and rest potential. Biophys. J. 77:1213–1224, 1999.

    CAS  Google Scholar 

  10. DiFrancesco, D., and D. Noble. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 307:353–398, 1985.

    Article  CAS  PubMed  Google Scholar 

  11. Dosdall, D. J., K.-A. Cheng, J. Huang, J. S. Allison, J. D. Allred, W. M. Smith, and R. E. Ideker. Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks. Heart Rhythm 4:758–765, 2007.

    Article  PubMed  Google Scholar 

  12. Dosdall, D. J., P. B. Tabereaux, J. J. Kim, G. P. Walcott, J. M. Rogers, C. R. Killingsworth, J. Huang, P. G. Robertson, W. M. Smith, and R. E. Ideker. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in dogs. Am. J. Physiol. Heart Circ. Physiol. 295:H883–H889, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Efimov, I. R., Y. Cheng, D. R. V. Wagoner, T. Mazgalev, and P. J. Tchou. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ. Res. 82:918–925, 1998.

    CAS  PubMed  Google Scholar 

  14. Fedorov, V. V., V. P. Nikolski, and I. R. Efimov. Effect of electroporation on cardiac electrophysiology. Methods Mol. Biol. 423:433–448, 2008.

    Article  PubMed  Google Scholar 

  15. Fotuhi, P. C., A. E. Epstein, and R. E. Ideker. Energy levels for defibrillation: what is of real clinical importance? Am. J. Cardiol. 83:24D–33D, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Han, W., W. Bao, Z. Wang, and S. Nattel. Comparison of ion-channel subunit expression in canine cardiac Purkinje fibers and ventricular muscle. Circ. Res. 91:790–797, 2002.

    Article  CAS  PubMed  Google Scholar 

  17. Han, W., Z. Wang, and S. Nattel. A comparison of transient outward currents in canine cardiac Purkinje cells and ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 279:H466–H474, 2000.

    CAS  PubMed  Google Scholar 

  18. Han, W., L. Zhang, G. Schram, and S. Nattel. Properties of potassium currents in Purkinje cells of failing human hearts. Am. J. Physiol. Heart Circ. Physiol. 283:H2495–H2503, 2002.

    CAS  PubMed  Google Scholar 

  19. Hooke, N., C. Henriquez, P. Lanzkron, and D. Rose. Linear algebraic transformations of the bidomain equations: implications for numerical methods. Math. Biosci. 120:127–145, 1994.

    Article  CAS  PubMed  Google Scholar 

  20. Huelsing, D. J., K. W. Spitzer, J. M. Cordeiro, and A. E. Pollard. Conduction between isolated rabbit Purkinje and ventricular myocytes coupled by a variable resistance. Am. J. Physiol. 274:H1163–H1173, 1998

    CAS  PubMed  Google Scholar 

  21. Jolley, M., J. Stinstra, S. Pieper, R. Macleod, D. H. Brooks, F. Cecchin, and J. K. Triedman. A computer modeling tool for comparing novel ICD electrode orientations in children and adults. Heart Rhythm 5:565–572, 2008.

    Article  PubMed  Google Scholar 

  22. Kerckhoffs, R. C. P., O. P. Faris, P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, E. R. McVeigh, and T. Arts. Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J. Cardiovasc. Electrophysiol. 14:S188–S195, 2003.

    Article  PubMed  Google Scholar 

  23. Kinst, T. F., M. O. Sweeney, J. L. Lehr, and S. R. Eisenberg. Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax. J. Cardiovasc. Electrophysiol. 8:537–547, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Li, H. G., D. L. Jones, R. Yee, and G. J. Klein. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia. J. Am. Coll. Cardiol. 22:607–614, 1993.

    Article  CAS  PubMed  Google Scholar 

  25. Loughrey, C. M., G. L. Smith, and K. E. MacEachern. Comparison of Ca2+ release and uptake characteristics of the sarcoplasmic reticulum in isolated horse and rabbit cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 287:H1149–H1159, 2004.

    Article  CAS  PubMed  Google Scholar 

  26. Lu, H. R., R. Marin, A. Saels, and F. D. Clerck. Species plays an important role in drug-induced prolongation of action potential duration and early afterdepolarizations in isolated Purkinje fibers. J. Cardiovasc. Electrophysiol. 12:93–102, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. McNary, T. G., K. Sohn, B. Taccardi, and F. B. Sachse. Experimental and computational studies of strain-conduction velocity relationships in cardiac tissue. Prog. Biophys. Mol. Biol. 97:383–400, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Morley, G. E., S. B. Danik, S. Bernstein, Y. Sun, G. Rosner, D. E. Gutstein, and G. I. Fishman. Reduced intercellular coupling leads to paradoxical propagation across the Purkinje-ventricular junction and aberrant myocardial activation. Proc. Natl Acad. Sci. USA 102:4126–4129, 2005.

    Article  CAS  PubMed  Google Scholar 

  29. Nygren, A., R. B. Clark, D. D. Belke, C. Kondo, W. R. Giles, and F. X. Witkowski. Voltage-sensitive dye mapping of activation and conduction in adult mouse hearts. Ann. Biomed. Eng. 28:958–967, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Nygren, A., C. Kondo, R. B. Clark, and W. R. Giles. Voltage-sensitive dye mapping in Langendorff-perfused rat hearts. Am. J. Physiol. Heart Circ. Physiol. 284:H892–H902, 2003.

    CAS  PubMed  Google Scholar 

  31. Oosthoek, P. W., S. Virgh, W. H. Lamers, and A. F. Moorman. Immunohistochemical delineation of the conduction system. II: the atrioventricular node and Purkinje fibers. Circ. Res. 73:482–491, 1993.

    CAS  PubMed  Google Scholar 

  32. Overholt, E. D., R. W. Joyner, R. D. Veenstra, D. Rawling, and R. Wiedmann. Unidirectional block between Purkinje and ventricular layers of papillary muscles. Am. J. Physiol. 247:H584–H595, 1984.

    CAS  PubMed  Google Scholar 

  33. Plank, G., L. J. Leon, S. Kimber, and E. J. Vigmond. Defibrillation depends on conductivity fluctuations and the degree of disorganization in reentry patterns. J. Cardiovasc. Electrophysiol. 16:205–216, 2005.

    Article  PubMed  Google Scholar 

  34. Potse, M., B. Dub, J. Richer, A. Vinet, and R. M. Gulrajani. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53:2425–2435, 2006.

    Article  PubMed  Google Scholar 

  35. Puglisi, J., F. Wang, and D. Bers. Modeling the isolated cardiac myocyte. Prog. Biophys. Mol. Biol. 85:163–178, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. Qin, H., J. Huang, J. M. Rogers, G. P. Walcott, D. L. Rollins, W. M. Smith, and R. E. Ideker. Mechanisms for the maintenance of ventricular fibrillation: the nonuniform dispersion of refractoriness, restitution properties, or anatomic heterogeneities? J. Cardiovasc. Electrophysiol. 16:888–897, 2005.

    Article  PubMed  Google Scholar 

  37. Ramanathan, C., P. Jia, R. Ghanem, K. Ryu, and Y. Rudy. Activation and repolarization of the normal human heart under complete physiological conditions. Proc. Natl Acad. Sci. USA 103:6309–6314, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Rentschler, S., D. M. Vaidya, H. Tamaddon, K. Degenhardt, D. Sassoon, G. E. Morley, J. Jalife, and G. I. Fishman. Visualization and functional characterization of the developing murine cardiac conduction system. Development 128:1785–1792, 2001.

    CAS  PubMed  Google Scholar 

  39. Roth, B. J., and J. P. Wikswo. Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. IEEE Trans. Biomed. Eng. 41:232–240, 1994.

    Article  CAS  PubMed  Google Scholar 

  40. Schafferhofer-Steltzer, I., E. Hofer, D. J. Huelsing, S. P. Bishop, and A. E. Pollard. Contributions of Purkinje-myocardial coupling to suppression and facilitation of early afterdepolarization-induced triggered activity. IEEE Trans. Biomed. Eng. 52:1522–1531, 2005.

    Article  PubMed  Google Scholar 

  41. Stewart, P., O. V. Aslanidi, D. Noble, P. J. Noble, M. R. Boyett, and H. Zhang. Mathematical models of the electrical action potential of Purkinje fibre cells. Philos. Trans. A Math. Phys. Eng. Sci. 367:2225–2255, 2009.

    Article  CAS  PubMed  Google Scholar 

  42. Streeter, D. D., R. N. Vaishnav, D. J. Patel, H. M. Spotnitz, J. Ross, and E. H. Sonnenblick. Stress distribution in the canine left ventricle during diastole and systole. Biophys. J. 10:345–363, 1970.

    Article  PubMed  Google Scholar 

  43. Sung, D., J. H. Omens, and A. D. McCulloch. Model-based analysis of optically mapped epicardial activation patterns and conduction velocity. Ann. Biomed. Eng. 28:1085–1092, 2000.

    Article  CAS  PubMed  Google Scholar 

  44. Tabereaux, P. B., G. P. Walcott, J. M. Rogers, J. Kim, D. J. Dosdall, P. G. Robertson, C. R. Killingsworth, W. M. Smith, and R. E. Ideker. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation 116:1113–1119, 2007.

    Article  PubMed  Google Scholar 

  45. ten Tusscher, K. H., and A. V. Panfilov. Modelling of the ventricular conduction system. Prog. Biophys. Mol. Biol. 96:152–170, 2008.

    Article  Google Scholar 

  46. Tranum-Jensen, J., A. A. Wilde, J. T. Vermeulen, and M. J. Janse. Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ. Res. 69:429–437, 1991.

    CAS  PubMed  Google Scholar 

  47. Trayanova, N., J. Eason, and F. Aguel. Computer simulations of cardiac defibrillation: a look inside the heart. Comput. Visual. Sci. 4:259–270, 2002.

    Article  Google Scholar 

  48. Vetter, F., and A. McCulloch. Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69:157–183, 1998.

    Article  CAS  PubMed  Google Scholar 

  49. Vigmond, E. J., and C. Clements. Construction of a computer model to investigate sawtooth effects in the Purkinje system. IEEE Trans. Biomed. Eng. 54:389–399, 2007.

    Article  Google Scholar 

  50. Vigmond, E. J., C. Clements, D. M. McQueen, and C. S. Peskin. Effect of bundle branch block on cardiac output: a whole heart simulation study. Prog. Biophys. Mol. Biol. 97:520–542, 2008.

    Article  PubMed  Google Scholar 

  51. Wiedmann, R. T., R. C. Tan, and R. W. Joyner. Discontinuous conduction at Purkinje-ventricular muscle junction. Am. J. Physiol. 271:H1507–H1516, 1996.

    CAS  PubMed  Google Scholar 

  52. Wiegerinck, R. F., A. O. Verkerk, C. N. Belterman, T. A. B. van Veen, A. Baartscheer, T. Opthof, R. Wilders, J. M. T. de Bakker, and R. Coronel. Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation 113:806–813, 2006.

    Article  PubMed  Google Scholar 

  53. Wu, M. H., M. J. Su, and S. S. Sun. Electrophysiological profile after inward rectifier K channel blockade by barium in isolated rabbit hearts. Altered repolarization and unmasked decremental conduction property. Europace 1:85–95, 1999.

    Article  CAS  PubMed  Google Scholar 

  54. Zhou, X., J. P. Daubert, P. D. Wolf, W. M. Smith, and R. E. Ideker. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ. Res. 72:145–160, 1993.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Alberta Ingenuity Fund, the Mathematics of Information Technology and Complex Systems NCE, and the Austria Science Fund FWF (Grant F3210-N18.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Boyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, P.M., Deo, M., Plank, G. et al. Purkinje-mediated Effects in the Response of Quiescent Ventricles to Defibrillation Shocks. Ann Biomed Eng 38, 456–468 (2010). https://doi.org/10.1007/s10439-009-9829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9829-4

Keywords

Navigation