Skip to main content
Log in

A Computational Approach to Understand Phenotypic Structure and Constitutive Mechanics Relationships of Single Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The goal of this study is to construct a representative 3D finite element model (FEM) of individual cells based on their sub-cellular structures that predicts cell mechanical behavior. The FEM simulations replicate atomic force microscopy (AFM) nanoindentation experiments on live vascular smooth muscle cells. Individual cells are characterized mechanically with AFM and then imaged in 3D using a spinning disc confocal microscope. Using these images, geometries for the FEM are automatically generated via image segmentation and linear programming algorithms. The geometries consist of independent structures representing the nucleus, actin stress fiber network, and cytoplasm. These are imported into commercial software for mesh refinement and analysis. The FEM presented here is capable of predicting AFM results well for 500 nm indentations. The FEM results are relatively insensitive to both the exact number and diameter of fibers used. Despite the localized nature of AFM nanoindentation, the model predicts that stresses are distributed in an anisotropic manner throughout the cell body via the actin stress fibers. This pattern of stress distribution is likely a result of the geometric arrangement of the actin network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

CytoD:

Cytochalasin D

FEM:

Finite element model

ST:

Simulation type

VSMC:

Vascular smooth muscle cell

References

  1. Athanasiou, K. A., B. S. Thoma, D. R. Lanctot, D. Shin, C. M. Agrawal, and R. G. LeBaron. Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell. Biomaterials 20(23–24):2405–2415, 1999.

    Article  PubMed  CAS  Google Scholar 

  2. Balogh, J., M. Merisckay, Z. Li, D. Paulin, and A. Arner. Hearts from Mice Lacking Desmin have a myopathy with impaired active force generation and unaltered wall compliance. Cardiovasc. Res. 53(2):439–450, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Buerke, M., M. Guckenbiehl, H. Schwertz, U. Buerke, M. Hilker, H. Platsch, J. Richert, S. Bomm, G. A. Zimmerman, S. Lindemann, U. Mueller-Werdan, K. Werdan, H. Darius, and A. S. Weyrich. Intramural delivery of sirolimus prevents vascular remodeling following balloon injury. Biochim. Biophys. Acta 1774(1):5–15, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Casscells, W. Migration of smooth muscle and endothelial cells—critical events in restenosis. Circulation 86(3):723–729, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Chicurel, M. E., C. S. Chen, and D. E. Ingber. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10(2):232–239, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Costa, K. D., W. J. Hucker, and F. C. P. Yin. Buckling of Actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motil. Cytoskeleton. 52(4):266–274, 2002.

    Article  PubMed  Google Scholar 

  7. Dailey, H. L., L. M. Ricles, H. C. Yalcin, and S. N. Ghadiali. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening. J. Appl. Physiol. 106(1):221–232, 2009.

    Article  PubMed  CAS  Google Scholar 

  8. Gittes, F., B. Mickey, J. Nettleton, and J. Howard. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4):923–934, 1993.

    Article  PubMed  CAS  Google Scholar 

  9. Gustafsson, M. G. L. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9(5):627–628, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Hemmer, J. D., D. Dean, A. Vertegel, E. Langan, III, and M. LaBerge. Effects of serum deprivation on the mechanical properties of adherent vascular smooth muscle cells. Proc. Inst. Mech. Eng. H 222(5):761–772, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Hemmer, J. D., J. Nagatomi, S. T. Wood, A. A. Vertegel, D. Dean, and M. LaBerge. Role of cytoskeletal components in stress-relaxation behavior of adherent vascular smooth muscle cells. J. Biomech. Eng. 131(4):9, 2009.

    Article  Google Scholar 

  12. Ingber, D. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3(5):841–848, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35(8):564–577, 2003.

    Article  PubMed  Google Scholar 

  14. Keller, R. S., S. Y. Shai, C. J. Babbitt, C. G. Pham, R. J. Solaro, M. L. Valencik, J. C. Loftus, and R. S. Ross. Disruption of integrin function in the murine myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac performance. Am. J. Pathol. 158(3):1079–1090, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Kojima, H., A. Ishijima, and T. Yanagida. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc. Natl. Acad. Sci. USA 91(26):12962–12966, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Kozubek, M., S. Kozubek, E. Lukasova, A. Mareckova, E. Bartova, M. Skalnikova, and A. Jergova. High-resolution cytometry of fish dots in interphase cell nuclei. Cytometry 36(4):279–293, 1999.

    Article  PubMed  CAS  Google Scholar 

  17. Kumar, S., I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90(10):3762–3773, 2006.

    Article  PubMed  CAS  Google Scholar 

  18. Li, C., and Q. Xu. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell. Signal. 19(5):881–891, 2007.

    Article  PubMed  CAS  Google Scholar 

  19. Li, G., T. M. Liu, A. Tarokh, J. X. Nie, L. Guo, A. Mara, S. Holley, and S. T. C. Wong. 3D cell nuclei segmentation based on gradient flow tracking. BMC Cell Biol. 8:40, 2007.

    Article  PubMed  Google Scholar 

  20. Li, T. A mechanics model of microtubule buckling in living cells. J. Biomech. 41(8):1722–1729, 2008.

    Article  PubMed  Google Scholar 

  21. Lin, G., U. Adiga, K. Olson, J. F. Guzowski, C. A. Barnes, and B. Roysam. A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry A. 56(1):23–36, 2003.

    Article  PubMed  Google Scholar 

  22. Lin, G., M. K. Chawla, K. Olson, J. F. Guzowski, C. A. Barnes, and B. Roysam. Hierarchical, model-based merging of multiple fragments for improved three-dimensional segmentation of nuclei. Cytometry A J. Int. Soc. Analyt. Cytol. 63A(1):20–33, 2005.

    Article  Google Scholar 

  23. Loufrani, L., K. Matrougui, Z. L. Li, B. I. Levy, P. Lacolley, D. Paulin, and D. Henrion. Selective microvascular dysfunction in mice lacking the gene encoding for desmin. FASEB J. 15(13):117–119, 2001.

    Google Scholar 

  24. Luo, Y., X. Xu, T. Lele, S. Kumar, and D. E. Ingber. A multi-modular tensegrity model of an actin stress fiber. J. Biomech. 41(7):2379–2387, 2008.

    Article  PubMed  Google Scholar 

  25. McManus, K. J., D. A. Stephens, N. M. Adams, S. A. Islam, P. S. Freemont, and M. J. Hendzel. The transcriptional regulator CBP has defined spatial associations within interphase nuclei. PLoS Comput. Biol. 2(10):1271–1283, 2006.

    Article  CAS  Google Scholar 

  26. Melder, R. J., C. A. Kristensen, L. L. Munn, and R. K. Jain. Modulation of A-NK cell rigidity: in vitro characterization and in vivo implications for cell delivery. Biorheology. 38(2–3):151–159, 2001.

    PubMed  CAS  Google Scholar 

  27. Mofrad, M. R. K. and R. D. Kamm (eds.). Cytoskeletal Mechanics. New York, NY: Cambridge University Press, p. 244, 2006.

  28. MSC, S.C. When F =/= Ku, pp. 2–11, 2009.

  29. Nagayama, K., Y. Yahiro, and T. Matsumoto. Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585(24):3992–3997, 2011.

    Article  PubMed  CAS  Google Scholar 

  30. Park, C. Y., D. Tambe, A. M. Alencar, X. Trepat, E. H. Zhou, E. Millet, J. P. Butler, and J. J. Fredberg. Mapping the cytoskeletal prestress. Am. J. Physiol. Cell Physiol. 298(5):C1245–C1252, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Peeters, E. A. G., C. W. J. Oomens, C. V. C. Bouten, D. L. Bader, and F. P. T. Baaijens. Mechanical and failure properties of single attached cells under compression. J. Biomech. 38(8):1685–1693, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Pullarkat, P. A., P. A. Fernández, and A. Ott. Rheological properties of the eukaryotic cell cytoskeleton. Phys. Rep. 449(1–3):29–53, 2007.

    Article  CAS  Google Scholar 

  33. Russell, R. A., N. M. Adams, D. A. Stephens, E. Batty, K. Jensen, and P. S. Freemont. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture. Biophys. J. 96(8):3379–3389, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Shiels, C., S. A. Islam, R. Vatcheva, P. Sasieni, M. J. E. Sternberg, P. S. Freemont, and D. Sheer. PML bodies associate specifically with the MHC gene cluster in interphase nuclei. J. Cell Sci. 114(20):3705–3716, 2001.

    PubMed  CAS  Google Scholar 

  35. Slomka, N., and A. Gefen. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. J. Biomech. 43(9):1806–1816, 2010.

    Article  PubMed  Google Scholar 

  36. Unnikrishnan, G. U., V. U. Unnikirishnan, and J. N. Reddy. Constitutive material modeling of cell: a micromechanics approach. J. Biomech. Eng. 129(3):315–323, 2007.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, J., C. Shiels, P. Sasieni, P. J. Wu, S. A. Islam, P. S. Freemont, and D. Sheer. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J. Cell Biol. 164(4):515–526, 2004.

    Article  PubMed  CAS  Google Scholar 

  38. Waters, C. M., P. H. S. Sporn, M. Y. Liu, and J. J. Fredberg. Cellular biomechanics in the lung. Am. J. Physiol. Lung Cellular Mol. Physiol. 283(3):L503–L509, 2002.

    CAS  Google Scholar 

  39. Weiss, L., G. Elkin, and E. Barberaguillem. The differential resistance of B16 wild-type and F10 cells to mechanical trauma in vitro. Invasion Metastasis 13(2):92–101, 1993.

    PubMed  CAS  Google Scholar 

  40. Wood, S. T., Computational approaches to understand phenotypic structure and constitutive mechanics relationships of single cells. Bioengineering, 2011.

  41. Xavier, J. B., A. Schnell, S. Wuertz, R. Palmer, D. C. White, and J. S. Almeida. Objective threshold selection procedure (OTS) for segmentation of scanning laser confocal microscope images. J. Microbiol. Methods 47(2):169–180, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the technical support provided by Shekhar Kanetkar and Zhong Qin of MSC Software and the financial support provided by the following grants from the National Institutes of Health: K25 HL 092228 and P20 RR-016461, and the National Science Foundation: CCF-0845593 and EPS-0903795.

Conflicts of interest

No conflict of interest apply to this manuscript and related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Dean.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, S.T., Dean, B.C. & Dean, D. A Computational Approach to Understand Phenotypic Structure and Constitutive Mechanics Relationships of Single Cells. Ann Biomed Eng 41, 630–644 (2013). https://doi.org/10.1007/s10439-012-0690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0690-5

Keywords

Navigation