Skip to main content
Log in

Time Evolution of Deformation in a Human Cartilage Under Cyclic Loading

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent imaging has revealed that in vivo contact deformations of human knee cartilage under physiological loadings are surprisingly large—typically on the order of 10%, but up to 20 or 30% of tibiofemora cartilage thickness depending on loading conditions. In this paper we develop a biphasic, large deformation, non-linear poroelastic model of cartilage that can accurately represent the time dependence and magnitude of cyclic cartilage deformations in vivo. The model takes into account cartilage tension–compression nonlinearity and a new constitutive relation in which the compressive stiffness and hydraulic permeability of the cartilage adjusts in response to the strain-dependent aggrecan concentration. The model predictions are validated using experimental test results on osteochondral plugs obtained from human cadavers. We find that model parameters can be optimised to give an excellent fit to the experimental data. Using typical hydraulic conductivity and stiffness parameters for healthy cartilage, we find that the experimentally observed transient and steady state tissue deformations under cyclic loading and unloading can be reproduced by the model. Steady state tissue deformations are shown to cycle between 10% (exudation strain) and 20% (total strain) in response to the cyclic test loads. At steady-state cyclic loading, the pore fluid exuded from the tissue is exactly equal to the pore fluid imbibed by the tissue during each load cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ateshian, G. A., N. O. Chahine, I. M. Basalo, and C. T. Hung. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J. Biomech. 37:391–400, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bachrach, N. M., W. B. Valhmu, E. Stazzone, A. Ratcliffe, W. M. Lai, and V. C. Mow. Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment. J. Biomech. 28:1561–1569, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. Barker, M. K., and B. B. Seedhom. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? Rheumatology 40:274–284, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Basser, P. J., R. Schneiderman, R. A. Bank, E. Wachtel, and A. Maroudas. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 351:207–219, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Bonassar, L. J., A. J. Grodzinsky, A. Srinivasan, S. G. Davila, and S. B. Trippel. Mechanical and physiochemical regulation of the action of insulin-like growth factor-i on articular cartilage. Arch. Biochem. Biophys. 379:57–63, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Burasc, P. M., T. W. Obitz, S. R. Eisenberg, and D. Stamenovic. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J. Biomech. 32:1125–1130, 1999.

    Article  Google Scholar 

  7. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108:1497–1508, 1995.

    CAS  PubMed  Google Scholar 

  8. Buschmann, M. D., Y.-J. Kim, M. Wong, E. Frank, E. B. Hunziker, and A. J. Rodzinsky. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch. Biochem. Biophys. 366:1–7, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Chahine, N. O., F. H. Chen, C. T. Hung, and G. A. Ateshian. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature. Biophys. J. 89:1543–1550, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. COMSOL-Multiphysics. MA: COMSOL, Inc: 2012.

  11. Curnier, A., Q.-C. He, and P. Zysset. Conewise linear elastic materials. J. Elast. 37:1–38, 1995.

    Article  Google Scholar 

  12. Disilvestro, M. R., and J.-K. F. Suh. Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: simulation of degeneration. Ann. Biomed. Eng. 30(6):792–800, 2002.

    Article  PubMed  Google Scholar 

  13. Dowthwaite, G. P., J. C. Bishop, J. C. Bishop, S. N. Redman, I. M. Khan, P. Rooney, D. J. R. Evans, L. Haughton, Z. Bayram, S. Boyer, B. Thomson, M. S. Wolfe, and C. W. Archer. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117:889–897, 2004.

    Article  CAS  PubMed  Google Scholar 

  14. Eckstein, F., M. Tieschky, and S. Faber. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat. Embryol. 200:419–424, 1999.

    Article  CAS  PubMed  Google Scholar 

  15. Gardiner, B. S., D. W. Smith, P. Pivonka, A. J. Grodzinsky, E. H. Frank, and L. Zhang. Solute transport in cartilage undergoing cyclic deformation. Comput. Methods Biomech. Biomed. Eng. 10:265–278, 2007.

    Article  Google Scholar 

  16. Gardiner, B. S., L. Zhang, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. A mathematical model for targeting chemicals to tissues by exploiting complex degradation. Biol. Direct 6:1–16, 2011.

    Article  Google Scholar 

  17. Gray, M. L., A. M. Pizzanelli, A. J. Grodzinsky, and R. C. Lee. Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6:777–792, 1988.

    Article  CAS  PubMed  Google Scholar 

  18. Grodzinsky, A. J., M. E. Levenston, M. Jin, and E. H. Frank. Cartilage tissue remodeling in response to mechanical forces. Ann. Rev. Biomed. Eng. 2:691–713, 2000.

    Article  CAS  Google Scholar 

  19. Guilak, F., and V. C. Mow. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33:1663–1673, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Heinegård, D., and A. Oldberg. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 3:2042–2051, 1989.

    PubMed  Google Scholar 

  21. Holmes, M. H., and V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23:1145–1156, 1990.

    Article  CAS  PubMed  Google Scholar 

  22. Kestin, J., M. Sokolov, and W. A. Wakeham. Viscosity of liquid water in the range −8 to 150 °C. J. Phys. Chem. Ref. Data 7:941–948, 1978.

    Article  CAS  Google Scholar 

  23. Kiani, C., L. Chen, Y. J. Wu, A. J. Yee, and B. B. Yang. Structure and function of aggrecan. Cell Res. 12:19–32, 2002.

    Article  PubMed  Google Scholar 

  24. Krishnan, R., S. Park, F. Eckstein, and G. A. Ateshian. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogenous state of stress. J. Biomech. Eng. 125:569–577, 2003.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kurz, B., A. K. Lemke, J. Fay, T. Pufe, A. J. Grodzinsky, and M. Schünke. Pathomechanisms of cartilage destruction by mechanical injury. Ann. Anat. 187:473–485, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Lai, W. M., V. C. Mow, and V. Roth. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103:61–66, 1981.

    Article  CAS  PubMed  Google Scholar 

  27. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, D. W., X. Banquy, and J. N. Israelachvili. Stick-slip friction and wear of articular joints. Proc. Natl. Acad. Sci. USA 110:E567–E574, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Loret, B., and B. FMF. Articular cartilage with intra- and extrafibrillar waters: a chemo-mechanical model. Mech. Mater. 36:515–541, 2004.

    Article  Google Scholar 

  30. Lu, X. L., D. D. N. Sun, X. E. Guo, F. H. Chen, W. M. Lai, and V. C. Mow. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann. Biomed. Eng. 32:370–379, 2004.

    Article  PubMed  Google Scholar 

  31. Maroudas, A. Physicochemical properties of articular cartilage. In: Adult Articular Cartilage, edited by M. A. R. Freeman. Kent: Pitman Medical, 1979, pp. 215–290.

    Google Scholar 

  32. Mauck, R. L., C. T. Hung, and G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125:602–614, 2000.

    Google Scholar 

  33. Mow, V. C., and W. C. Hayes. Basic Orthopaedic Biomechanics (2nd ed.). Philadephia: Lippincoot—Raven Publishers, 1997.

    Google Scholar 

  34. Mow, V. C., M. H. Holmes, and W. M. Lai. Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17:377–394, 1984.

    Article  CAS  PubMed  Google Scholar 

  35. Mow, V. C., J. S. Hou, J. M. Owens, and A. Ratcliffe. Biphasic and Quasilinear Viscoelastic Theories for Hydrated Soft Tissues. Biomechanics of Diarthrodial Joints. New York: Springer, pp. 215–260, 1990.

    Google Scholar 

  36. Muir, H. Proteoglycan of cartilage. J. Clin. Pathol. 12:67–81, 1978.

    Article  CAS  Google Scholar 

  37. Oloyede, A., and N. D. Broom. Is classical consolidation theory applicable to articular cartilage deformation? Clin. Biomech. 6:206–212, 1991.

    Article  CAS  Google Scholar 

  38. Oloyede, A., and N. D. Broom. The generalized consolidation of articular cartilage: an investigation of its near-physiological response to static load. Connect. Tissue Res. 31:75–86, 1994.

    Article  CAS  PubMed  Google Scholar 

  39. Quinn, T. M., A. J. Grodzinsky, M. D. Buschmann, Y.-J. Kim, and E. B. Hunziker. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J. Cell Sci. 111:573–583, 1998.

    CAS  PubMed  Google Scholar 

  40. Quinn, T. M., P. Dierickx, and A. J. Grodzinsky. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression. J. Biomech. 34:1483–1490, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Reynaud, B., and T. M. Quinn. Anisotropic hydraulic permeability in compressed articular cartilage. J. Biomech. 39:131–137, 2006.

    Article  PubMed  Google Scholar 

  42. Rotter, N., G. Tobias, M. Lebl, A. K. Roy, M. C. Hansen, C. A. Vacanti, and L. J. Bonassar. Age-related changes in the composition and mechanical properties of human nasal cartilage. Arch. Biochem. Biophys. 403:132–140, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Sah, R. L.-Y., Y.-J. Kim, J.-Y. H. Doong, A. J. Grodzinsky, A. H. K. Plass, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.

    Article  CAS  PubMed  Google Scholar 

  44. Setton, L. A., D. M. Elliott, and V. C. Mow. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr. Cartil. 7:2–14, 1999.

    Article  CAS  PubMed  Google Scholar 

  45. Smith, D. W., B. S. Gardiner, J. B. Davidson, A. J. Grodzinsky. Computational model for the analysis of cartilage and cartilage tissue constructs. Tissue Eng. Regen. Med. doi:10.1002/term.1751, 2013.

  46. Soltz, M. A., and G. A. Ateshian. A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J. Biomech. Eng. 122:576–586, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Spilker, R. L., and J.-K. Suh. Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissues. Comput. Struct. 35:425–439, 1990.

    Article  Google Scholar 

  48. Sun, D. N., W. Y. Gu, X. E. Guo, W. M. Lai, and V. C. Mow. A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int. J. Numer. Methods Eng. 45:1375–1402, 1999.

    Article  Google Scholar 

  49. Treppo, S., H. Koepp, E. C. Quan, A. A. Cole, K. E. Kuettner, and A. J. Grodzinsky. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18:739–748, 2000.

    Article  CAS  PubMed  Google Scholar 

  50. Wu, J. Z., and W. Herzog. Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes. J. Biomech. 35:931–942, 2002.

    Article  CAS  PubMed  Google Scholar 

  51. Zamparo, O., and W. D. Comper. Hydraulic conductivity of chondroitin sulfate proteoglycan solutions. Arch. Biochem. Biophys. 274:259–269, 1989.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, L. Solute transport in cyclic deformed heterogeneous articular cartilage. Int. J. Appl. Mech. 3:1–18, 2011.

    Article  CAS  Google Scholar 

  53. Zhang, L. Solute transport in cyclic deformed heterogeneous articular cartilage. Int. J. Appl. Mech. 3:507–524, 2011.

    Article  Google Scholar 

  54. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch. Biochem. Biophys. 457:47–56, 2007.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. A fully coupled poroelastic reactive-transport model of cartilage. Mol. Cell. Biomech. 5:133–153, 2008.

    PubMed  Google Scholar 

  56. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. IGF uptake with competitive binding in articular cartilage. J. Biol. Syst. 16:175–195, 2008.

    Article  CAS  Google Scholar 

  57. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. Integrated model of IGF-I mediated biosynthesis in deforming articular cartilage. J. Eng. Mech. 135:439–449, 2009.

    Article  Google Scholar 

  58. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. Integrated model of IGF-I mediated biosynthesis in deforming articular cartilage. J. Eng. Mech (ASCE). 135:439–449, 2009.

    Article  Google Scholar 

  59. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. The transport of insulin-like growth factor through cartilage. In: Porous Media: Applications in Biological Systems and Biotechnology, edited by K. Vafai. Boca Raton: Taylor & Francis Group, 2010.

    Google Scholar 

  60. Zhang, L., M. Richardson, and P. Mendis. The role of chemical and mechanical stimuli in mediating bone fracture healing. Clin. Exp. Pharmacol. Physiol. 39(8):706–710, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Health and Medical Research Council, Australian Government (Grant Ref APP1051538) and NIH Grant AR060331 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihai Zhang.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Miramini, S., Smith, D.W. et al. Time Evolution of Deformation in a Human Cartilage Under Cyclic Loading. Ann Biomed Eng 43, 1166–1177 (2015). https://doi.org/10.1007/s10439-014-1164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1164-8

Keywords

Navigation