Skip to main content
Log in

One-Dimensional Haemodynamic Modeling and Wave Dynamics in the Entire Adult Circulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 10 February 2016

Abstract

One-dimensional (1D) modeling is a powerful tool for studying haemodynamics; however, a comprehensive 1D model representing the entire cardiovascular system is lacking. We present a model that accounts for wave propagation in anatomically realistic systemic (including coronary and cerebral) arterial/venous networks, pulmonary arterial/venous networks and portal veins. A lumped parameter (0D) heart model represents cardiac function via a time-varying elastance and source resistance, and accounts for mechanical interactions between heart chambers mediated via pericardial constraint, the atrioventricular septum and atrioventricular plane motion. A non-linear windkessel-like 0D model represents microvascular beds, while specialized 0D models are employed for the hepatic and coronary beds. Model-derived pressure and flow waveforms throughout the circulation are shown to reproduce the characteristic features of published human waveforms. Moreover, wave intensity profiles closely resemble available in vivo profiles. Forward and backward wave intensity is quantified and compared along major arteriovenous paths, providing insights into wave dynamics in all of the major physiological networks. Interactions between cardiac function/mechanics and vascular waves are investigated. The model will be an important resource for studying the mechanics underlying pressure/flow waveforms throughout the circulation, along with global interactions between the heart and vessels under normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alastruey, J., A. A. E. Hunt, and P. D. Weinberg. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections. Int. J. Numer. Methods Biomed. Eng. 30:249–279, 2014.

    Article  Google Scholar 

  2. Alastruey, J., A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. Peiró. Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44:2250–2258, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alfie, J., G. D. Waisman, C. R. Galarza, and M. I. Camera. Contribution of stroke volume to the change in pulse pressure pattern with age. Hypertension 34:808–812, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Algranati, D., G. S. Kassab, and Y. Lanir. Mechanisms of myocardium-coronary vessel interaction. Am. J. Physiol. Heart Circ. Physiol. 298:H861–H873, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Anliker, M., R. L. Rockwell, and E. Ogden. Nonlinear analysis of flow pulses and shock waves in arteries, part I: derivation and properties of mathematical model. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 22:217–246, 1971.

    Article  Google Scholar 

  6. Appleton, C. P., L. K. Hatle, and R. L. Popp. Superior vena cava and hepatic vein doppler echocardiography in healthy adults. J. Am. Coll. Cardiol. 10:1032–1039, 1987.

    Article  CAS  PubMed  Google Scholar 

  7. Arts, T., R. T. Kruger, W. van Gerven, J. A. Lambregts, and R. S. Reneman. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am. J. Physiol. Heart Circ. Physiol. 237:H469–H474, 1979.

    CAS  Google Scholar 

  8. Avolio, A. Multi-branched model of the human arterial system. Med. Biol. Eng. Comput. 18:709–718, 1980.

    Article  CAS  PubMed  Google Scholar 

  9. Barakat, M. Non-pulsatile hepatic and portal vein waveforms in patients with liver cirrhosis: concordant and discordant relationships. Brit. J. Radiol. 77:547–550, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Bergel, D. H. The dynamic elastic properties of the arterial wall. J. Physiol. 156:458–469, 1961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bessems, D., M. Rutten, and F. N. Van de Vosse. A wave propagation model of blood flow in large vessels using an approximate velocity profile function. J. Fluid Mech. 580:145–168, 2007.

    Article  Google Scholar 

  12. Biglino, G., J. A. Steeden, C. Baker, S. Schievano, A. M. Taylor, K. H. Parker, and V. Muthurangu. A non-invasive clinical application of wave intensity analysis based on ultrahigh temporal resolution phase-contrast cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14:1186, 2012.

    Article  Google Scholar 

  13. Blanco, P., and R. Feijóo. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med. Eng. Phys. 35:652–667, 2013.

    Article  CAS  PubMed  Google Scholar 

  14. Blanco, P. J., S. M. Watanabe, E. A. Dari, M. A. R. Passos, and R. A. Feijóo. Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms. Biomech. Model. Mechanobiol. 13:1303–1330, 2014.

    Article  PubMed  Google Scholar 

  15. Blanco, P. J., S. M. Watanabe, and R. A. Feijoo. Identification of vascular territory resistances in one-dimensional hemodynamics simulations. J. Biomech. 45:2066–2073, 2012.

    Article  CAS  PubMed  Google Scholar 

  16. Blanco, P., S. Watanabe, M. Passos, P. Lemos, and R. Feijoo. An anatomically detailed arterial network model for one-dimensional computational hemodynamics. IEEE Trans. Biomed. Eng. 62:736–753, 2014.

    Article  PubMed  Google Scholar 

  17. Boonyasirinant, T., P. Rajiah, R. M. Setser, M. L. Lieber, H. M. Lever, M. Y. Desai, and S. D. Flamm. Aortic stiffness is increased in hypertrophic cardiomyopathy with myocardial fibrosis: novel insights in vascular function from magnetic resonance imaging. J. Am. Coll. Cardiol. 54:255–262, 2009.

    Article  PubMed  Google Scholar 

  18. Bowman, A. W., and S. J. Kovács. Prediction and assessment of the time-varying effective pulmonary vein area via cardiac MRI and doppler echocardiography. Am. J. Physiol. Heart Circ. Physiol. 288:H280–H286, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Braunwald, E., A. P. Fishman, and A. Cournand. Time relationship of dynamic events in the cardiac chambers, pulmonary artery and aorta in man. Circ. Res. 4:100–107, 1956.

    Article  CAS  PubMed  Google Scholar 

  20. Brawley, R., H. Oldham, J. Vasko, R. Henney, and A. Morrow. Influence of right atrial pressure pulse on instantaneous vena caval blood flow. Am. J. Physiol. 211:347–353, 1966.

    CAS  PubMed  Google Scholar 

  21. Brown, K. A., and R. V. Ditchey. Human right ventricular end-systolic pressure-volume relation defined by maximal elastance. Circulation 78:81–91, 1988.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen, M. L., B. S. Cohen, I. Kronzon, G. W. Lighty, and H. E. Winer. Superior vena caval blood flow velocities in adults: a doppler echocardiographic study. J. Appl. Physiol. 61:215–219, 1986.

    CAS  PubMed  Google Scholar 

  23. Courtois, M., B. Barzilai, F. Gutierrez, and P. A. Ludbrook. Characterization of regional diastolic pressure gradients in the right ventricle. Circulation 82:1413–1423, 1990.

    Article  CAS  PubMed  Google Scholar 

  24. Davies, J. E., J. Alastruey, D. P. Francis, N. Hadjiloizou, Z. I. Whinnett, C. H. Manisty, J. Aguado-Sierra, K. Willson, R. A. Foale, I. S. Malik, A. D. Hughes, K. H. Parker, and J. Mayet. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension 60:778–785, 2012.

    Article  CAS  PubMed  Google Scholar 

  25. Davies, J. E., Z. I. Whinnett, D. P. Francis, C. H. Manisty, J. Aguado-Sierra, K. Willson, R. A. Foale, I. S. Malik, A. D. Hughes, K. H. Parker, and J. Mayet. Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113:1768–1778, 2006.

    Article  PubMed  Google Scholar 

  26. de Marchi, S. F., M. Bodenmüller, D. L. Lai, and C. Seiler. Pulmonary venous flow velocity patterns in 404 individuals without cardiovascular disease. Heart 85:23–29, 2001.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Dodge, J. T. J., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246, 1992.

    Article  PubMed  Google Scholar 

  28. Dwyer, N., A. Yong, and D. Kilpatrick. Variable open-end wave reflection in the pulmonary arteries of anesthetized sheep. J. Physiol. Sci. 62:21–28, 2012.

    Article  PubMed  Google Scholar 

  29. Echt, M., J. Düweling, O. H. Gauer, and L. Lange. Effective compliance of the total vascular bed and the intrathoracic compartment derived from changes in central venous pressure induced by volume changes in man. Circ. Res. 34:61–68, 1974.

    Article  CAS  PubMed  Google Scholar 

  30. Edwards, P. D., R. K. Bull, and R. Coulden. CT measurement of main pulmonary artery diameter. Brit. J. Radiol. 71:1018–1020, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Feneley, M. P., T. P. Gavaghan, D. W. Baron, J. A. Branson, P. R. Roy, and J. J. Morgan. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation 71:473–480, 1985.

    Article  CAS  PubMed  Google Scholar 

  32. Fisher, D. J., M. A. Heymann, and A. M. Rudolph. Regional myocardial blood flow and oxygen delivery in fetal, newborn, and adult sheep. Am. J. Physiol. Heart Circ. Physiol. 243:H729–H731, 1982.

    CAS  Google Scholar 

  33. Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26:477–488, 2005.

    Article  PubMed  Google Scholar 

  34. Formaggia, L., D. Lamponi, and A. Quarteroni. One-dimensional models for blood flow in arteries. J. Eng. Math. 47:251–276, 2003.

    Article  Google Scholar 

  35. Gao, Z., T. E. Wilson, R. C. Drew, J. Ettinger, and K. D. Monahan. Altered coronary vascular control during cold stress in healthy older adults. Am. J. Physiol. Heart Circ. Physiol. 302:H312–H318, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Gardin, J. M., C. S. Burn, W. J. Childs, and W. L. Henry. Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by doppler echocardiography. Am. Heart J. 107:310–319, 1984.

    Article  CAS  PubMed  Google Scholar 

  37. Gleason, W. L., and E. Braunwald. Studies on the first derivative of the ventricular pressure pulse in man. J. Clin. Invest. 41:80–91, 1962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Glenny, R. W., and H. T. Robertson. Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70:1024–1030, 1991.

    CAS  PubMed  Google Scholar 

  39. Gorg, C., J. Riera-Knorrenschild, and J. Dietrich. Colour doppler ultrasound flow patterns in the portal venous system. Brit. J. Radiol. 75:919–929, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Gozna, E. R., A. E. Marble, A. Shaw, and J. G. Holland. Age-related changes in the mechanics of the aorta and pulmonary artery of man. J. Appl. Physiol. 36:407–411, 1974.

    CAS  PubMed  Google Scholar 

  41. Graettinger, W. F., E. R. Greene, and W. F. Voyles. Doppler predictions of pulmonary artery pressure, flow, and resistance in adults. Am. Heart J. 113:1426–1436, 1987.

    Article  CAS  PubMed  Google Scholar 

  42. Gray, H. Anatomy of the Human Body (20th ed.). Philadephia: Lea & Felbiger, 1918.

    Google Scholar 

  43. Greenfield, J. C. J. R., and D. M. J. R. Griggs. Relation between pressure and diameter in main pulmonary artery of man. J. Appl. Physiol. 18:557–559, 1963.

    Google Scholar 

  44. Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: Quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006.

    Article  CAS  PubMed  Google Scholar 

  45. Gunes, Y., U. Guntekin, M. Tuncer, Y. Kaya, and A. Akyol. Association of coronary sinus diameter with pulmonary hypertension. Echocardiography 25:935–940, 2008.

    Article  PubMed  Google Scholar 

  46. Gusic, R. J., M. Petko, R. Myung, J. William Gaynor, and K. J. Gooch. Mechanical properties of native and ex vivo remodeled porcine saphenous veins. J. Biomech. 38:1770–1779, 2005.

    Article  PubMed  Google Scholar 

  47. Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology (9th ed.). Pennsylvania: W.B. Saunders Company, 1996.

    Google Scholar 

  48. Gwilliam, M. N., N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson. MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J. Cereb. Blood Flow Metab. 29:1975–1982, 2009.

    Article  PubMed  Google Scholar 

  49. Heineman, F. W., and J. Grayson. Transmural distribution of intramyocardial pressure measured by micropipette technique. Am. J. Physiol. Heart Circ. Physiol. 249:H1216–H1223, 1985.

    CAS  Google Scholar 

  50. Hellevik, L., P. Segers, N. Stergiopulos, F. Irgens, P. Verdonck, C. Thompson, K. Lo, R. Miyagishima, and O. Smiseth. Mechanism of pulmonary venous pressure and flow waves. Heart Vessels 14:67–71, 1999.

    Article  CAS  PubMed  Google Scholar 

  51. Hollander, E. H., J. J. Wang, G. M. Dobson, K. H. Parker, and J. V. Tyberg. Negative wave reflections in pulmonary arteries. Am. J. Physiol. Heart Circ. Physiol. 281:H895–H902, 2001.

    CAS  PubMed  Google Scholar 

  52. Huang, W., R. T. Yen, M. McLaurine, and G. Bledsoe. Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81:2123–2133, 1996.

    CAS  PubMed  Google Scholar 

  53. Huberts, W., A. S. Bode, W. Kroon, R. N. Planken, J. H. M. Tordoir, F. N. van de Vosse, and E. M. H. Bosboom. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34:233–248, 2012.

    Article  CAS  PubMed  Google Scholar 

  54. Hudsmith, L. E., S. E. Petersen, J. M. Francis, M. D. Robson, and S. Neubauer. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 7:775–782, 2005.

    Article  PubMed  Google Scholar 

  55. Iwase, M., K. Nagata, H. Izawa, M. Yokota, S. Kamihara, H. Inagaki, and H. Saito. Age-related changes in left and right ventricular filling velocity profiles and their relationship in normal subjects. Am. Heart J. 126:419–426, 1993.

    Article  CAS  PubMed  Google Scholar 

  56. Jones, C. J., M. Sugawara, Y. Kondoh, K. Uchida, and K. H. Parker. Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis. Heart Vessels 16:91–98, 2002.

    Article  PubMed  Google Scholar 

  57. Kass, D. A., M. Midei, W. Graves, J. A. Brinker, and W. L. Maughan. Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Cathet. Cardiovasc. Diagn. 15:192–202, 1988.

    Article  CAS  PubMed  Google Scholar 

  58. Kassab, G. S., D. H. Lin, and Y. C. Fung. Morphometry of pig coronary venous system. Am. J. Physiol. Heart Circ. Physiol. 267:H2100–H2113, 1994.

    CAS  Google Scholar 

  59. Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. Heart Circ. Physiol. 265:H350–H365, 1993.

    CAS  Google Scholar 

  60. Keats, T. E., and C. Sistrom. Atlas of Radiologic Measurement. Missouri, USA: Mosby Inc, 2001.

    Google Scholar 

  61. Keren, G., E. H. Sonnenblick, and T. H. LeJemtel. Mitral anulus motion. Relation to pulmonary venous and transmitral flows in normal subjects and in patients with dilated cardiomyopathy. Circulation 78:621–629, 1988.

    Article  CAS  PubMed  Google Scholar 

  62. Kim, Y.-H., E. M. Marom, J. E. Herndon, and H. P. McAdams. Pulmonary vein diameter, cross-sectional area, and shape: CT analysis. Radiology 235:43–49, 2005.

    Article  PubMed  Google Scholar 

  63. Kroeker, E. J., and E. H. Wood. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ. Res. 3:623–632, 1955.

    Article  CAS  PubMed  Google Scholar 

  64. Krook, H. Estimation of portal venous pressure by occlusive hepatic vein catheterization. Scand. J. Clin. Lab. Invest. 5:285–292, 1953.

    Article  CAS  PubMed  Google Scholar 

  65. Lantz, B., J. Foerster, D. Link, and J. Holcroft. Regional distribution of cardiac output: normal values in man determined by video dilution technique. Am. J. Roentgenol. 137:903–907, 1981.

    Article  CAS  Google Scholar 

  66. Lau, E. M. T., D. Abelson, N. Dwyer, Y. Yu, M. K. Ng, and D. S. Celermajer. Assessment of ventriculo-arterial interaction in pulmonary arterial hypertension using wave intensity analysis. Eur. Respir. J. 43:1804–1807, 2014.

    Article  PubMed  Google Scholar 

  67. Learoyd, B. M., and M. G. Taylor. Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18:278–292, 1966.

    Article  CAS  PubMed  Google Scholar 

  68. Leyh, R. G., C. Schmidtke, H.-H. Sievers, and M. H. Yacoub. Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation 100:2153–2160, 1999.

    Article  CAS  PubMed  Google Scholar 

  69. Liang, F., S. Takagi, R. Himeno, and H. Liu. Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput. 47:743–755, 2009.

    Article  PubMed  Google Scholar 

  70. Liang, F. Y., S. Takagi, R. Himeno, and H. Liu. Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study. J. Biomech. 42:692–704, 2009.

    Article  CAS  PubMed  Google Scholar 

  71. Little, W. C., and G. L. Freeman. Description of LV pressure-volume relations by time-varying elastance and source resistance. Am. J. Physiol. Heart Circ. Physiol. 253:H83–H90, 1987.

    CAS  Google Scholar 

  72. Lumens, J., T. Delhaas, B. Kirn, and T. Arts. Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann. Biomed. Eng. 37:2234–2255, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Luo, C., D. Ware, J. Zwischenberger, and J. Clark. Using a human cardiopulmonary model to study and predict normal and diseased ventricular mechanics, septal interaction, and atrio-ventricular blood flow patterns. Cardiovasc. Eng. 7:17–31, 2007.

    Article  CAS  PubMed  Google Scholar 

  74. Maffessanti, F., P. Gripari, G. Pontone, D. Andreini, E. Bertella, S. Mushtaq, G. Tamborini, L. Fusini, M. Pepi, and E. G. Caiani. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur. Heart J. Cardiovasc. Imaging 14:986–995, 2013.

    Article  PubMed  Google Scholar 

  75. Magder, S. Starling resistor versus compliance. Which explains the zero-flow pressure of a dynamic arterial pressure-flow relation? Circ. Res. 67:209–220, 1990.

    Article  CAS  PubMed  Google Scholar 

  76. Maksuti, E., A. Bjällmark, and M. Broomé. Modelling the heart with the atrioventricular plane as a piston unit. Med. Eng. Phys. 37:87–92, 2015.

    Article  PubMed  Google Scholar 

  77. Malossi, A. C. I., P. J. Blanco, and S. Deparis. A two-level time step technique for the partitioned solution of one-dimensional arterial networks. Comput. Meth. Appl. Mech. Eng. 237–240:212–226, 2012.

    Article  Google Scholar 

  78. Maniar, H. S., S. M. Prasad, S. L. Gaynor, C. M. Chu, P. Steendijk, and M. R. Moon. Impact of pericardial restraint on right atrial mechanics during acute right ventricular pressure load. Am. J. Physiol. Heart Circ. Physiol. 284:H350–H357, 2003.

    Article  CAS  PubMed  Google Scholar 

  79. Martini, F. H. Fundamentals of Anatomy & Physiology (4th ed.). New Jersey: Prentice Hall International, 1998.

    Google Scholar 

  80. Maughan, W. L., K. Sunagawa, and K. Sagawa. Ventricular systolic interdependence: volume elastance model in isolated canine hearts. Am. J. Physiol. Heart Circ. Physiol. 253:H1381–H1390, 1987.

    CAS  Google Scholar 

  81. Milnor, W. R. Hemodynamics (2nd ed.). Baltimore: Williams & Wilkins, 1989.

    Google Scholar 

  82. Mohiaddin, R. H., S. L. Wann, R. Underwood, D. N. Firmin, S. Rees, and D. B. Longmore. Vena caval flow: assessment with cine MR velocity mapping. Radiology 177:537–541, 1990.

    Article  CAS  PubMed  Google Scholar 

  83. Mostbeck, G. H. Duplex and Color Doppler Imaging of the Venous System. Berlin: Springer, 2004.

    Book  Google Scholar 

  84. Müller, L. O., and E. F. Toro. Enhanced global mathematical model for studying cerebral venous blood flow. J. Biomech. 47:3361–3372, 2014.

    Article  PubMed  Google Scholar 

  85. Müller, L. O., and E. F. Toro. A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Numer. Methods Biomed. Eng. 30:681–725, 2014.

    Article  Google Scholar 

  86. Murgo, J. P., N. Westerhof, J. P. Giolma, and S. A. Altobelli. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116, 1980.

    Article  CAS  PubMed  Google Scholar 

  87. Mynard, J. P., M. R. Davidson, D. J. Penny, and J. J. Smolich. A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int. J. Numer. Methods Biomed. Eng. 28:626–641, 2012.

    Article  CAS  Google Scholar 

  88. Mynard, J. P. Computer modelling and wave intensity analysis of perinatal cardiovascular function and dysfunction. PhD thesis, Department of Paediatrics, University of Melbourne, 2011.

  89. Mynard, J. P., and P. Nithiarasu. A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Comm. Numer. Methods Eng. 24:367–417, 2008.

    Article  Google Scholar 

  90. Mynard, J., D. J. Penny, and J. J. Smolich. Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients. J. Biomech. 41:3314–3321, 2008.

    Article  PubMed  Google Scholar 

  91. Mynard, J. P., D. J. Penny, and J. J. Smolich. Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation. Am. J. Physiol. Heart Circ. Physiol. 306:H517–H528, 2014.

    Article  CAS  PubMed  Google Scholar 

  92. Mynard, J. P., and J. J. Smolich. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics. Am. J. Physiol. Heart Circ. Physiol. 307:H307–H318, 2014.

    Article  CAS  PubMed  Google Scholar 

  93. Niki, K., M. Sugawara, D. Chang, A. Harada, T. Okada, and R. Tanaka. Effects of sublingual nitroglycerin on working conditions of the heart and arterial system: analysis using wave intensity. J. Med. Ultrason. 32:145–152, 2005.

    Article  Google Scholar 

  94. Nippa, J. H., R. H. Alexander, and R. Folse. Pulse wave velocity in human veins. J. Appl. Physiol. 30:558–563, 1971.

    CAS  PubMed  Google Scholar 

  95. Nowinski, W. L., A. Thirunavuukarasuu, I. Volkau, Y. Marchenko, and V. M. Runge. The Cerefy Atlas of Cerebral Vasculature. Thieme New York, 2009.

  96. Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol. 276:H257–H268, 1999.

    CAS  Google Scholar 

  97. Parker, K. H. An introduction to wave intensity analysis. Med. Biol. Eng. Comput. 47:175–188, 2009.

    Article  PubMed  Google Scholar 

  98. Patel, D. J., D. P. Schilder, and A. J. Mallos. Mechanical properties and dimensions of the major pulmonary arteries. J. Appl. Physiol. 15:92–96, 1960.

    CAS  PubMed  Google Scholar 

  99. Penny, D. J., J. P. Mynard, and J. J. Smolich. Aortic wave intensity analysis of ventricular-vascular interaction during incremental dobutamine infusion in adult sheep. Am. J. Physiol. Heart Circ. Physiol. 294:H481–H489, 2008.

    Article  CAS  PubMed  Google Scholar 

  100. Pettersen, M. D., W. Du, M. E. Skeens, and R. A. Humes. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J. Am. Soc. Echocardiogr. 21:922–934, 2008.

    Article  PubMed  Google Scholar 

  101. Quail, M. A., D. S. Knight, J. A. Steeden, A. Taylor, and V. Muthurangu. Novel magnetic resonance wave intensity analysis in pulmonary hypertension. J. Cardiovasc. Magn. Reson. 16:P252, 2014.

    Article  PubMed Central  Google Scholar 

  102. Qureshi, M. U., G. A. Vaughan, C. Sainsbury, M. Johnson, C. Peskin, M. Olufsen, and N. A. Hill. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomech. Model. Mechanobiol. 13:1137–1154, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Rabbany, S. Y., J. Y. Kresh, and A. Noordergraaf. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am. J. Physiol. Heart Circ. Physiol. 257:H357–H364, 1989.

    CAS  Google Scholar 

  104. Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009.

    Article  CAS  PubMed  Google Scholar 

  105. Saito, S., Y. Araki, A. Usui, T. Akita, H. Oshima, J. Yokote, and Y. Ueda. Mitral valve motion assessed by high-speed video camera in isolated swine heart. Eur. J. Cardiothorac. Surg. 30:584–591, 2006.

    Article  PubMed  Google Scholar 

  106. Schmassmann, A., M. Zuber, M. Livers, K. Jager, H. R. Jenzer, and H. F. Fehr. Recurrent bleeding after variceal hemorrhage: predictive value of portal venous duplex sonography. Am. J. Roentgenol. 160:41–47, 1993.

    Article  CAS  Google Scholar 

  107. Schreiber, S. J., E. Stolz, and J. M. Valdueza. Transcranial ultrasonography of cerebral veins and sinuses. Eur. J. Ultrasound 16:59–72, 2002.

    Article  CAS  PubMed  Google Scholar 

  108. Sherwin, S. J., V. Franke, J. Peiró, and K. Parker. One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47:217–250, 2003.

    Article  Google Scholar 

  109. Shoukas, A. A. Pressure-flow and pressure-volume relations in the entire pulmonary vascular bed of the dog determined by two-port analysis. Circ. Res. 37:809–818, 1975.

    Article  CAS  PubMed  Google Scholar 

  110. Shroff, S. G., J. S. Janicki, and K. T. Weber. Evidence and quantitation of left ventricular systolic resistance. Am. J. Physiol. Heart Circ. Physiol. 249:H358–H370, 1985.

    CAS  Google Scholar 

  111. Sievers, B., M. Addo, F. Breuckmann, J. Barkhausen, and R. Erbel. Reference right atrial function determined by steady-state free precession cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9:807–814, 2007.

    Article  PubMed  Google Scholar 

  112. Smiseth, O. A., C. R. Thompson, K. Lohavanichbutr, H. Ling, J. G. Abel, R. T. Miyagishima, S. V. Lichtenstein, and J. Bowering. The pulmonary venous systolic flow pulse–its origin and relationship to left atrial pressure. J. Am. Coll. Cardiol. 34:802–809, 1999.

    Article  CAS  PubMed  Google Scholar 

  113. Smith, N. P., A. J. Pullan, and P. J. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018, 2002.

    Article  Google Scholar 

  114. Steding-Ehrenborg, K., M. Carlsson, S. Stephensen, and H. Arheden. Atrial aspiration from pulmonary and caval veins is caused by ventricular contraction and secures 70% of the total stroke volume independent of resting heart rate and heart size. Clin. Physiol. Funct. Imaging 33:233–240, 2013.

    Article  CAS  PubMed  Google Scholar 

  115. Stergiopulos, N., J. J. Meister, and N. Westerhof. Determinants of stroke volume and systolic and diastolic aortic pressure. Am. J. Physiol. Heart Circ. Physiol. 270:H2050–H2059, 1996.

    CAS  Google Scholar 

  116. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25:1477–1488, 1992.

    Article  CAS  PubMed  Google Scholar 

  117. Su, J., C. Manisty, K. Parker, and A. Hughes. Wave intensity analysis in the pulmonary artery. Artery Res. 8:127, 2014.

    Article  Google Scholar 

  118. Sun, Y., M. Beshara, R. J. Lucariello, and S. A. Chiaramida. A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. Am. J. Physiol. Heart Circ. Physiol. 272:H1499–H1515, 1997.

    CAS  Google Scholar 

  119. Sun, Y., B. J. Sjoberg, P. Ask, D. Loyd, and B. Wranne. Mathematical model that characterizes transmitral and pulmonary venous flow velocity patterns. Am. J. Physiol. Heart Circ. Physiol. 268:H476–H489, 1995.

    CAS  Google Scholar 

  120. Takatsu, H., K. Gotoh, T. Suzuki, Y. Ohsumi, Y. Yagi, T. Tsukamoto, Y. Terashima, K. Nagashima, and S. Hirakawa. Quantitative estimation of compliance of human systemic veins by occlusion plethysmography with radionuclide–methodology and the effect of nitroglycerin. Jpn. Circ. J. 53:245–254, 1989.

    Article  CAS  PubMed  Google Scholar 

  121. Takeuchi, M., M. Odake, H. Takaoka, Y. Hayashi, and M. Yokoyama. Comparison between preload recruitable stroke work and the end-systolic pressure-volume relationship in man. Eur. Heart J. 13:80–84, 1992.

    Article  PubMed  Google Scholar 

  122. Tanaka, T., M. Arakawa, T. Suzuki, M. Gotoh, H. Miyamoto, and S. Hirakawa. Compliance of human pulmonary “venous” system estimated from pulmonary artery wedge pressure tracings–comparison with pulmonary arterial compliance. Jpn. Circ. J. 50:127–139, 1986.

    Article  CAS  PubMed  Google Scholar 

  123. Trachet, B., P. Reymond, J. Kips, A. Swillens, M. De Buyzere, B. Suys, N. Stergiopulos, and P. Segers. Numerical validation of a new method to assess aortic pulse wave velocity from a single recording of a brachial artery waveform with an occluding cuff. Ann. Biomed. Eng. 38:876–888, 2010.

    Article  CAS  PubMed  Google Scholar 

  124. Tsakiris, A. G., D. A. Gordon, R. Padiyar, D. Fréchette, and C. Labrosse. The role of displacement of the mitral annulus in left atrial filling and emptying in the intact dog. Can. J. Physiol. Pharmacol. 56:447–457, 1978.

    Article  CAS  PubMed  Google Scholar 

  125. Unsal, N. H., A. Erden, and I. Erden. Evaluation of the splenic vein diameter and longitudinal size of the spleen in patients with gamna-gandy bodies. Diagn. Interv. Radiol. 12:125–128, 2006.

    PubMed  Google Scholar 

  126. van de Vosse, F. N., and N. Stergiopulos. Pulse wave propagation in the arterial tree. Ann. Rev. Fluid Mech. 43:467–499, 2011.

    Article  Google Scholar 

  127. Van de Werf, F., A. Boel, J. Geboers, J. Minten, J. Willems, H. De Geest, and H. Kesteloot. Diastolic properties of the left ventricle in normal adults and in patients with third heart sounds. Circulation 69:1070–1078, 1984.

    Article  PubMed  Google Scholar 

  128. Wang, J. J., and K. H. Parker. Wave propagation in a model of the arterial circulation. J. Biomech. 37:457–470, 2004.

    Article  CAS  PubMed  Google Scholar 

  129. Watzinger, N., G. K. Lund, M. Saeed, G. P. Reddy, P. A. Araoz, M. Yang, A. B. Schwartz, M. Bedigian, and C. B. Higgins. Myocardial blood flow in patients with dilated cardiomyopathy: quantitative assessment with velocity-encoded cine magnetic resonance imaging of the coronary sinus. J. Magn. Reson. Imaging 21:347–353, 2005.

    Article  PubMed  Google Scholar 

  130. Westerhof, N., F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121–134, 1969.

    Article  CAS  PubMed  Google Scholar 

  131. Wexler, L., D. H. Bergel, I. T. Gabe, G. S. Makin, and C. J. Mills. Velocity of blood flow in normal human venae cavae. Circ. Res. 23:349–359, 1968.

    Article  CAS  PubMed  Google Scholar 

  132. Wiesmann, F., S. E. Petersen, P. M. Leeson, J. M. Francis, M. D. Robson, Q. Wang, R. Choudhury, K. M. Channon, and S. Neubauer. Global impairment of brachial, carotid, and aortic vascular function in young smokers: direct quantification by high-resolution magnetic resonance imaging. J. Am. Coll. Cardiol. 44:2056–2064, 2004.

    Article  PubMed  Google Scholar 

  133. Willemet, M., and J. Alastruey. Arterial pressure and flow wave analysis using time-domain 1-D hemodynamics. Ann. Biomed. Eng. 43:190–206, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Wilson, N., S. J. Goldberg, D. F. Dickinson, and O. Scott. Normal intracardiac and great artery blood velocity measurements by pulsed doppler echocardiography. Br. Heart J. 53:451–458, 1985.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Wittkampf, F. H. M., E.-J. Vonken, R. Derksen, P. Loh, B. Velthuis, E. F. D. Wever, L. V. A. Boersma, B. J. Rensing, and M.-J. Cramer. Pulmonary vein ostium geometry: analysis by magnetic resonance angiography. Circulation 107:21–23, 2003.

    Article  PubMed  Google Scholar 

  136. Xu, R. Y., B. Liu, and N. Lin. Therapeutic effects of endoscopic variceal ligation combined with partial splenic embolization for portal hypertension. World J. Gastroenterol. 10:1072–1074, 2004.

    PubMed Central  PubMed  Google Scholar 

  137. Yellin, E. L., S. Nikolic, and R. W. Frater. Left ventricular filling dynamics and diastolic function. Prog. Cardiovasc. Dis. 32:247–271, 1990.

    Article  CAS  PubMed  Google Scholar 

  138. Zambanini, A., S. L. Cunningham, K. H. Parker, A. W. Khir, G. T. S. A. Mc, and A. D. Hughes. Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis. Am. J. Physiol. Heart Circ. Physiol. 289:H270–H276, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J. P. Mynard acknowledges the support of a CJ Martin Early Career Fellowship from the National Health and Medical Research Council of Australia. This work was supported in part by the Victorian Government’s Operational Infrastructure Support Program.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Mynard.

Additional information

Associate Editor Diego Gallo oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 52 kb)

Supplementary material 2 (XLSX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mynard, J.P., Smolich, J.J. One-Dimensional Haemodynamic Modeling and Wave Dynamics in the Entire Adult Circulation. Ann Biomed Eng 43, 1443–1460 (2015). https://doi.org/10.1007/s10439-015-1313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1313-8

Keywords

Navigation