Skip to main content
Log in

Patient-Specific Surgical Planning, Where Do We Stand? The Example of the Fontan Procedure

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The Fontan surgery for single ventricle heart defects is a typical example of a clinical intervention in which patient-specific computational modeling can improve patient outcome: with the functional heterogeneity of the presenting patients, which precludes generic solutions, and the clear influence of the surgically-created Fontan connection on hemodynamics, it is acknowledged that individualized computational optimization of the post-operative hemodynamics can be of clinical value. A large body of literature has thus emerged seeking to provide clinically relevant answers and innovative solutions, with an increasing emphasis on patient-specific approaches. In this review we discuss the benefits and challenges of patient-specific simulations for the Fontan surgery, reviewing state of the art solutions and avenues for future development. We first discuss the clinical impact of patient-specific simulations, notably how they have contributed to our understanding of the link between Fontan hemodynamics and patient outcome. This is followed by a survey of methodologies for capturing patient-specific hemodynamics, with an emphasis on the challenges of defining patient-specific boundary conditions and their extension for prediction of post-operative outcome. We conclude with insights into potential future directions, noting that one of the most pressing issues might be the validation of the predictive capabilities of the developed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Baretta, A., C. Corsini, W. Yang, I. E. Vignon-Clementel, A. L. Marsden, J. A. Feinstein, T. Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos Trans A Math Phys Eng Sci 369(1954):4316–4330, 2011.

    Article  PubMed  CAS  Google Scholar 

  2. Corsini, C., C. Baker, E. Kung, S. Schievano, G. Arbia, A. Baretta, G. Biglino, F. Migliavacca, G. Dubini, G. Pennati, A. Marsden, I. Vignon-Clementel, A. Taylor, T. Y. Hsia, and A. Dorfman. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Engin 17(14):1572–1589, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dasi, L. P., R. KrishnankuttyRema, H. D. Kitajima, K. Pekkan, K. S. Sundareswaran, M. Fogel, S. Sharma, K. Whitehead, K. Kanter, and A. P. Yoganathan. Fontan hemodynamics: importance of pulmonary artery diameter. J. Thorac. Cardiovasc. Surg. 137(3):560–564, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dasi, L. P., K. Pekkan, H. D. Katajima, and A. P. Yoganathan. Functional analysis of Fontan energy dissipation. J. Biomech. 41(10):2246–2252, 2008.

    Article  PubMed  Google Scholar 

  5. Dasi, L. P., K. S. Sundareswaran, C. Sherwin, D. de Zelicourt, K. Kanter, M. A. Fogel, and A. P. Yoganathan. Larger aortic reconstruction corresponds to diminished left pulmonary artery size in patients with single-ventricle physiology. J. Thorac. Cardiovasc. Surg. 139(3):557–561, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Zélicourt, D. A. Pulsatile Fontan hemodynamics and patient-specific surgical planning: a numerical investigation. Atlanta: Georgia Institute of Technology, 2010. https://smartech.gatech.edu/handle/1853/39549.

  7. de Zélicourt, D. A., C. M. Haggerty, K. S. Sundareswaran, B. S. Whited, J. R. Rossignac, K. R. Kanter, J. W. Gaynor, T. L. Spray, F. Sotiropoulos, M. A. Fogel, and A. P. Yoganathan. Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J. Thorac. Cardiovasc. Surg. 141(5):1170–1177, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fogel, M. A., P. M. Weinberg, A. J. Chin, K. E. Fellows, and E. A. Hoffman. Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J. Am. Coll. Cardiol. 28(1):212–221, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Gewillig, M., S. C. Brown, B. Eyskens, R. Heying, J. Ganame, W. Budts, A. La Gerche, and M. Gorenflo. The Fontan circulation: who controls cardiac output? Interact. Cardiovasc. Thorac. Surg. 10(3):428–433, 2010.

    Article  PubMed  Google Scholar 

  10. Haggerty, C. M., D. A. de Zelicourt, M. Restrepo, J. Rossignac, T. L. Spray, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. Comparing pre- and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning. Ann. Biomed. Eng. 40(12):2639–2651, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haggerty, C. M., K. R. Kanter, M. Restrepo, D. A. de Zélicourt, W. J. Parks, J. Rossignac, M. A. Fogel, and A. P. Yoganathan. Simulating hemodynamics of the Fontan y-graft based on patient-specific in vivo connections. J. Thorac. Cardiovasc. Surg. 145(3):663–670, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Haggerty, C. M., M. Restrepo, E. Tang, D. A. de Zelicourt, K. S. Sundareswaran, L. Mirabella, J. Bethel, K. K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J. Thorac. Cardiovasc. Surg. 148(4):1481–1489, 2014.

    Article  PubMed  Google Scholar 

  13. Haggerty, C. M., K. K. Whitehead, J. Bethel, M. A. Fogel, and A. P. Yoganathan. Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics. Ann. Thorac. Surg. 99(3):911–917, 2015.

    Article  PubMed  Google Scholar 

  14. Itatani, K., K. Miyaji, T. Tomoyasu, Y. Nakahata, K. Ohara, S. Takamoto, and M. Ishii. Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann. Thorac. Surg. 88(2):565–572, 2009; (discussion 72–3).

    Article  PubMed  Google Scholar 

  15. Iyengar, A. J., D. S. Winlaw, J. C. Galati, D. S. Celermajer, G. R. Wheaton, T. L. Gentles, L. E. Grigg, R. G. Weintraub, A. Bullock, R. N. Justo, and Y. d’Udekem. Trends in Fontan surgery and risk factors for early adverse outcomes after Fontan surgery: the Australia and New Zealand Fontan registry experience. J. Thorac. Cardiovasc. Surg. 148(2):566–575, 2014.

    Article  PubMed  Google Scholar 

  16. Kansy, A., G. Brzezinska-Rajszys, M. Zubrzycka, M. Mirkowicz-Malek, P. Maruszewski, M. Manowska, and B. Maruszewski. Pulmonary artery growth in univentricular physiology patients. Kardiol. Pol. 71(6):581–587, 2013.

    Article  PubMed  Google Scholar 

  17. Khairy, P., N. Poirier, and L. A. Mercier. Univentricular heart. Circulation 115(6):800–812, 2007.

    Article  PubMed  Google Scholar 

  18. Khiabani, R. H., M. Restrepo, E. Tang, D. De Zélicourt, F. Sotiropoulos, M. Fogel, and A. P. Yoganathan. Effect of flow pulsatility on modeling the hemodynamics in the total cavopulmonary connection. J. Biomech. 45(14):2376–2381, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101(2):139–143, 2015.

    Article  PubMed  Google Scholar 

  20. Korperich, H., P. Barth, J. Gieseke, K. Muller, W. Burchert, H. Esdorn, D. Kececioglu, P. Beerbaum, and K. T. Laser. Impact of respiration on stroke volumes in paediatric controls and in patients after Fontan procedure assessed by mr real-time phase-velocity mapping. Eur. Heart J. Cardiovasc. Imaging 16(2):198–209, 2015.

    Article  PubMed  Google Scholar 

  21. Kung, E., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, S. Schievano, I. E. Vignon-Clementel, G. Dubini, G. Pennati, A. Taylor, A. Dorfman, A. M. Hlavacek, A. L. Marsden, T. Y. Hsia, and F. Migliavacca. Predictive modeling of the virtual hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. J. Biomech. 46(2):423–429, 2013.

    Article  PubMed  Google Scholar 

  22. Kung, E., G. Pennati, F. Migliavacca, T. Y. Hsia, R. Figliola, A. Marsden, and A. Giardini. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J. Biomech. Eng. 136(8):081007, 2014.

    Article  Google Scholar 

  23. Kung, E., J. C. Perry, C. Davis, F. Migliavacca, G. Pennati, A. Giardini, T. Y. Hsia, and A. Marsden. Computational modeling of pathophysiologic responses to exercise in Fontan patients. Ann Biomed Eng 43(6):1310–1320, 2014.

    PubMed  Google Scholar 

  24. Liang, F., H. Senzaki, C. Kurishima, K. Sughimoto, R. Inuzuka, and H. Liu. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. Am. J. Physiol. Heart Circ. Physiol. 307(7):H1056–H1072, 2014.

    Article  PubMed  CAS  Google Scholar 

  25. Liang, F., K. Sughimoto, K. Matsuo, H. Liu, and S. Takagi. Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. Int. J. Numer. Method Biomed. Eng. 30(10):1000–1018, 2014.

    Article  PubMed  Google Scholar 

  26. Liu, J., Y. Qian, Q. Sun, and M. Umezu. Use of computational fluid dynamics to estimate hemodynamic effects of respiration on hypoplastic left heart syndrome surgery: total cavopulmonary connection treatments. Sci. World J. 2013:131597, 2013.

    Google Scholar 

  27. Long, C. C., M. C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid-structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Method Biomed. Eng. 28(5):513–527, 2012.

    Article  PubMed  CAS  Google Scholar 

  28. Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel y-shaped extracardiac Fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 137(2):394–403, 2009.

    Article  PubMed  Google Scholar 

  29. Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 35(2):250–263, 2007.

    Article  PubMed  Google Scholar 

  30. Menon, P. G., M. Yoshida, and K. Pekkan. Presurgical evaluation of Fontan connection options for patients with apicocaval juxtaposition using computational fluid dynamics. Artif. Organs 37(1):E1–E8, 2013.

    Article  PubMed  Google Scholar 

  31. Mirabella, L., C. M. Haggerty, T. Passerini, M. Piccinelli, A. J. Powell, P. J. Del Nido, A. Veneziani, and A. P. Yoganathan. Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions. Int. J. Numer. Method Biomed. Eng. 29(2):197–216, 2013.

    Article  PubMed  Google Scholar 

  32. Mori, M., A. J. Aguirre, R. W. Elder, A. Kashkouli, A. B. Farris, R. M. Ford, and W. M. Book. Beyond a broken heart: circulatory dysfunction in the failing Fontan. Pediatr. Cardiol. 35(4):569–579, 2014.

    Article  PubMed  Google Scholar 

  33. Restrepo, M., M. Luffel, J. Sebring, K. Kanter, P. Del Nido, A. Veneziani, J. Rossignac, and A. Yoganathan. Surgical planning of the total cavopulmonary connection: robustness analysis. Ann. Biomed. Eng. 43(6):1321–1334, 2014.

    Article  PubMed  Google Scholar 

  34. Restrepo, M., L. Mirabella, E. Tang, C. M. Haggerty, R. H. Khiabani, F. Fynn-Thompson, A. M. Valente, D. B. McElhinney, M. A. Fogel, and A. P. Yoganathan. Fontan pathway growth: a quantitative evaluation of lateral tunnel and extracardiac cavopulmonary connections using serial cardiac magnetic resonance. Ann. Thorac. Surg. 97(3):916–922, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sankaran, S., and A. L. Marsden. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. 133(3):031001, 2011.

    Article  PubMed  Google Scholar 

  36. Srivastava, D., T. Preminger, J. E. Lock, V. Mandell, J. F. Keane, J. E. Mayer, Jr, H. Kozakewich, and P. J. Spevak. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation 92(5):1217–1222, 1995.

    Article  PubMed  CAS  Google Scholar 

  37. Sundareswaran, K. S., K. Pekkan, L. P. Dasi, K. Whitehead, S. Sharma, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am. J. Physiol. Heart Circ. Physiol. 295(6):H2427–H2435, 2008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Tang, E., M. Restrepo, C. M. Haggerty, L. Mirabella, J. Bethel, K. K. Whitehead, M. A. Fogel, and A. P. Yoganathan. Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC Cardiovasc. Imaging 7(3):215–224, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Troianowski, G., C. A. Taylor, J. A. Feinstein, and I. E. Vignon-Clementel. Three-dimensional simulations in glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J. Biomech. Eng. 133(11):111006, 2011.

    Article  PubMed  CAS  Google Scholar 

  40. Valentin, A., L. Cardamone, S. Baek, and J. D. Humphrey. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J. R. Soc. Interface 6(32):293–306, 2009.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Watrous, R. L., and A. J. Chin. Model-based comparison of the normal and Fontan circulatory systems: Part i: Development of a general purpose, interactive cardiovascular model. World J. Pediatr. Congenit. Heart Surg. 5(3):372–384, 2014.

    Article  PubMed  Google Scholar 

  42. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116(11 Suppl):I165–I171, 2007.

    PubMed  Google Scholar 

  43. Yang, W., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149(1):247–255, 2015.

    Article  PubMed  Google Scholar 

  44. Yang, W., J. A. Feinstein, and A. L. Marsden. Constrained optimization of an idealized y-shaped baffle for the Fontan surgery at rest and exercise. Comput. Methods Appl. Mech. Eng. 199(33–36):2135–2149, 2010.

    Article  Google Scholar 

  45. Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Swiss National Science Foundation through the NCCR Kindey.CH and a Marie Heim-Vögtlin Fellowship (PMPDP2_151255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane A. de Zélicourt.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Zélicourt, D.A., Kurtcuoglu, V. Patient-Specific Surgical Planning, Where Do We Stand? The Example of the Fontan Procedure. Ann Biomed Eng 44, 174–186 (2016). https://doi.org/10.1007/s10439-015-1381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1381-9

Keywords

Navigation