Skip to main content
Log in

In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Highly porous chitosan/hydroxyapatite composite structures with different weight ratios (100/0; 90/10; 80/20; 70/30; 60/40; 50/50; 40/60) have been prepared by precipitation method and freeze-gelation technique using calcite, urea phosphate and chitosan as starting materials. The composition of prepared composite scaffolds was characterized by X-ray diffraction analysis and Fourier transformed infrared spectroscopy, while morphology of scaffolds was imaged by scanning electron microscopy. Mercury intrusion porosimetry measurements of prepared scaffolds have shown different porosity and microstructure regarding to the HA content, along with SEM observations of scaffolds after being immersed in physiological medium. The results of swelling capacity and compressive strength measured in Dulbecco’s phosphate buffer saline (DPBS) have shown higher values for composite scaffolds with lower in situ HA content. Viability, proliferation and differentiation of MC3T3-E1 cells seeded on different scaffolds have been evaluated by live dead assay and confocal scan microscopy. Our results suggest that the increase of HA content enhance osteoblast differentiation confirming osteogenic properties of highly porous CS/HA scaffolds for tissue engineering applications in bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Azzaoui, K., A. Lamhamdi, E. M. Mejdoubi, M. Berrabah, B. Hammouti, A. Elidrissi, M. M. G. Fouda, and S. S. Al-Deyab. Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohydr. Polym. 111:41–46, 2014.

    Article  CAS  PubMed  Google Scholar 

  2. Bacakova, L., E. Filova, M. Parizek, T. Ruml, and V. Svorcik. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotech. Adv. 29:739–767, 2011.

    Article  CAS  Google Scholar 

  3. Bose, S., and S. Tarafder. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8:1401–1421, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan, B. P., and K. W. Leong. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17:467–479, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhandayuthapani, B., Y. Yoshida, T. Maekawa, and D. S. Kumar. Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 1–19:2011, 2011.

    Google Scholar 

  6. Dorozhkin, S. V. Calcium orthophosphate-based bioceramics. Materials 6:3840–3942, 2013.

    Article  CAS  Google Scholar 

  7. Frohbergh, M. E., A. Katsman, G. P. Botta, P. Lazarovici, C. L. Schauer, U. G. K. Wegst, and P. I. Lelkes. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerstenfeld, L. C., C. M. Edgar, S. Kakar, K. A. Jacobsen, and T. A. Einhorn. Osteogenic growth factors and cytokines and their role in bone repair. In: Engineering of Functional Skeletal Tissues, in Topics in Bone Biology, edited by M. C. Farach-Carson, A. G. Mikos, and F. Bronner. London: Springer, 2005, pp. 17–44.

    Google Scholar 

  9. Harada, S.-I., and G. A. Rodan. Control of osteoblast function and regulation of bone mass. Nature 423:349–355, 2003.

    Article  CAS  PubMed  Google Scholar 

  10. Ishihara, S., T. Matsumoto, T. Onoki, T. Sohmura, and A. Nakahira. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater. Sci. Eng. C 29:1885–1888, 2009.

    Article  CAS  Google Scholar 

  11. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Kirkham, G.R., Cartmell, S.H. Genes and proteins involved in the regulation of osteogenesis. In: Topics in Tissue Engineering, edited by N. Ashammakhi, R.L. Reis, and E. Chiellini, R.R.E.C., 2007. pp. 1–22.

  13. Lee, H., and G. H. Kim. Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr. Polym. 85:817–823, 2010.

    Article  Google Scholar 

  14. Lewandowska, K. Miscibility and interactions in chitosan acetate/poly(Nvinylpyrrolidone) blends. Thermochim. Acta 517:90–97, 2011.

    Article  CAS  Google Scholar 

  15. Li, J., D. Zhu, J. Yin, Y. Liu, F. Yao, and K. Yao. Formation of nano-hydroxyapatite cristal in situ in chitosan-pectin polyelectrolyte complex network. Mater. Sci. Eng. C 30:795–803, 2010.

    Article  CAS  Google Scholar 

  16. Martel-Estrada, S. A., C. A. Martínez-Pérez, J. G. Chacón-Nava, P. E. García-Casillas, and I. Olivas-Armendariz. Synthesis and thermo-physical properties of chitosan/poly(dl-lactide-co-glycolide) composites prepared by thermally induced phase separation. Carbohydr. Polym. 81:775–783, 2010.

    Article  CAS  Google Scholar 

  17. Martins, A. M., R. C. Pereira, I. B. Leonor, H. S. Azevedo, and R. L. Reis. Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: a novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation. Acta Biomater. 5:3328–3336, 2009.

    Article  CAS  PubMed  Google Scholar 

  18. Martins, A. M., M. I. Santos, H. S. Azevedo, P. B. Malafaya, and R. L. Reis. Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications. Acta Biomater. 5:1637–1645, 2008.

    Article  Google Scholar 

  19. Mohamed, K. R., Z. M. El-Rashidy, and A. A. Salama. In vitro properties of nanohydroxyapatite/chitosan biocomposites. Ceram. Int. 37:3265–3271, 2011.

    Article  CAS  Google Scholar 

  20. O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95, 2011.

    Article  Google Scholar 

  21. Osborn, J. F., and H. Newesely. The material science of calcium phosphate ceramics. Biomaterials 1:108–111, 1980.

    Article  CAS  PubMed  Google Scholar 

  22. Rogina, A., M. Ivanković, and H. Ivanković. Preparation and characterization of nano-hydroxyapatite within chitosan matrix. Mater. Sci. Eng. C 33:4539–4544, 2013.

    Article  CAS  Google Scholar 

  23. Rogina, A., P. Rico, G. Gallego Ferrer, M. Ivanković, and H. Ivanković. Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. Eur. Polym. J. 68:278–287, 2015.

    Article  CAS  Google Scholar 

  24. Sarem, M., F. Moztarzadeh, and M. Mozafari. How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydr. Polym. 93:635–643, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. Seibel, M. J. Biochemical markers of bone turnover part I: biochemistry and variability. Clin. Biochem. Rev 26:97–122, 2005.

    PubMed  PubMed Central  Google Scholar 

  26. Shaltout, A. A., M. A. Allam, and M. A. Moharram. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochim. Acta A 83:56–60, 2011.

    Article  CAS  Google Scholar 

  27. Silva, S. S., S. M. Luna, M. E. Gomes, J. Benesch, I. Paskuleva, J. F. Mano, and R. L. Reis. Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol. Biosci. 8:568–576, 2007.

    Article  Google Scholar 

  28. Stein, G. S., J. B. Lian, A. J. van Wijnen, J. L. Stein, M. Montecino, A. Javed, A. K. Zaidi, D. W. Young, J.-Y. Choi, and S. M. Pockwinse. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23:4315–4329, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. Suvorova, E. I., F. Christensson, H. E. Lundager Madsen, and A. A. Chernov. Terrestrial and space-grown HAP and OCP crystals: effect of growth conditions on perfection and morphology. J. Cryst. Growth 186:262–274, 1998.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki, O. Interface of synthetic inorganic biomaterials and bone regeneration. Int. Congr. Ser. 1284:274–283, 2005.

    Article  CAS  Google Scholar 

  31. Suzuki, O., S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, and R. Kamijo. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27:2671–2681, 2006.

    Article  CAS  PubMed  Google Scholar 

  32. Wagoner Johnson, A. J., and B. A. Herschler. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7:16–30, 2011.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y.-C., M.-C. Lin, D.-M. Wang, and H.-J. Hsieh. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24:1047–1057, 2003.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, N. Y., Y. A. Lin, M. H. Ho, D. M. Wang, J. Y. Lai, and H. J. Hsieh. Effect of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate and carboxymethyl cellulose by freeze-gelation method. Carbohydr. Polym. 78:349–356, 2009.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of the Croatian Science Foundation (project: “Development of Biocompatible Hydroxyapatite Based Materials for Bone Tissue Engineering Applications”) and L’Oréal-UNESCO Foundation ‘For Women in Science’ is gratefully acknowledged. The financial support from the Spanish Ministry of Economy and Competitiveness and the Feder funds through the MAT2013-46467-C4-1-R project is acknowledged by the Spanish co-authors. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors want to acknowledge Pilar Gómez Tena and Sergio Mestre Beltrán from Instituto de Tecnología Cerámica, Castellon, Spain, for theirs assistance with porosity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anamarija Rogina.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 13406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogina, A., Rico, P., Gallego Ferrer, G. et al. In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds. Ann Biomed Eng 44, 1107–1119 (2016). https://doi.org/10.1007/s10439-015-1418-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1418-0

Keywords

Navigation