Skip to main content
Log in

Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE−/− Mice

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This work analyzes the progressive stiffening of the aorta due to atherosclerosis development of both ApoE−/− and C57BL/6J mice fed on a Western (n = 5) and a normal (n = 5) chow diet for the ApoE−/− group and on a normal chow diet (n = 5) for the C57BL/6J group. Sets of 5 animals from the three groups were killed after 10, 20, 30 and 40 weeks on their respective diets (corresponding to 17, 27, 37 and 47 weeks of age). Mechanical properties (inflation test and axial residual stress measurements) and histological properties were compared for both strains, ApoE−/− on the hyper-lipidic diet and both ApoE−/− and C57BL/6J on the normal diet, after the same period and after different periods of diet. The results indicated that the aorta stiffness in the ApoE−/− and C57BL/6J mice under normal diet remained approximately constant irrespective of their age. However, the arterial stiffness in the ApoE−/− on the hyper-lipidic diet increased over time. Statistical differences were found between the group after 10 weeks and the groups after 30 and 40 weeks of a hyper-lipidic diet. Comparing the hyper-lipidic and normal diet mice, statistical differences were also found between both diets in all cases after 40 weeks of diet, frequently after 30 weeks, and in some cases after 20 weeks. The early stages of lesion corresponded to the first 2 weeks of diet. Advanced lesions were found at 30 weeks and, finally, the aorta was completely damaged after 40 weeks of diet. In conclusion, we found substantial changes in the mechanical properties of the aorta walls of the ApoE−/− mice fed with the hyper-lipidic diet compared to the normal chow diet groups for both the ApoE−/− and C57BL/6J groups. These findings could serve as a reference for the study of changes in the arterial wall properties in cases of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Agianniotis, A., N. Stergiopulos. Wall properties of the apolipoprotein E-deficient mouse aorta. Atherosclerosis 223(2):314–320, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Buja, L. et al. Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 3(1):87–101, 1983.

    Article  CAS  Google Scholar 

  3. Cardamone, L. et al. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8(6):431–446, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carmeliet, P. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat. Genet.17(4):439–444, 1997.

    Article  CAS  PubMed  Google Scholar 

  5. Chai, C.-K. et al. Compressive mechanical properties of atherosclerotic plaques. Indentation test to characterise the local anisotropic behaviour. J. Biomech. 47:784–792, 2014.

    Article  PubMed  Google Scholar 

  6. Chiu, J.-J., S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.

    Article  PubMed  Google Scholar 

  7. Daugherty, A. Mouse models of atherosclerosis. Am. J. Med. Sci. 323(1):3–10, 2002.

    Article  PubMed  Google Scholar 

  8. Davis, E. C. Elastic lamina growth in the developing mouse aorta. J. Histochem. Cytochem. 43(11):1115–1123, 1995.

    Article  CAS  PubMed  Google Scholar 

  9. Ebenstein, D. M. et al. Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. A 91:1028–1037, 2009.

    Article  PubMed  Google Scholar 

  10. Faggiotto, A. et al. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arterioscler. Thromb. Vasc. Biol. 4(4):323–340, 1984.

    Article  CAS  Google Scholar 

  11. Gosling, R. G., M. M. Budge. Terminology for describing the elastic behavior of arteries. Hypertension 41:1180–1182, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Gotschy, A. et al. Local arterial stiffening assessed by MRI precedes atherosclerotic plaque formation. Circ. Cardiovasc. Imaging 6:916–923, 2013.

    Article  PubMed  Google Scholar 

  13. Greenwald, S. E. et al. Experimental investigation of the distribution of residual strains in the artery wall. ASME J. Biomech. Eng. 119(4):438–444, 1997.

    Article  CAS  Google Scholar 

  14. Guo, X., G. S. Kassab. Variation of mechanical properties along the length of the aorta in C57BL/6 mice. Am. J. Physiol. Heart Circ. Physiol. 285:H2614–H2622, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, X. et al. Effect of cigarette smoking on nitric oxide, structural, and mechanical properties of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 291:H2354–H2361, 2006.

    Article  CAS  PubMed  Google Scholar 

  16. Hang, H. C., Y. C. Fung. Longitudinal strain of canine and porcine aortas. J. Biomech. 28:637–641, 1995.

    Article  Google Scholar 

  17. Hayenga, H. et al. Regional atherosclerotic plaque properties in ApoE−/− mice quantified by atomic force, immunofluorescence, and light microscopy. J. Vasc. Res. 48:495–504, 2011.

    Article  CAS  Google Scholar 

  18. Hirano, T. et al. Apoprotein C-III deficiency markedly stimulates triglyceride secretion in vivo: comparison with apoprotein E. Am. J. Physiol. - Endocrinol. Metab. 281(4):E665–E669, 2001.

    CAS  PubMed  Google Scholar 

  19. Holzapfel, G. A. et al. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. ASME J. Biomech. Eng. 126:657–665, 2004.

    Article  Google Scholar 

  20. Hoyt Jr., R. E. et al. The Mouse in Biomedical Research (2nd Edition). New York: Academic Press, 2007.

    Google Scholar 

  21. Huang, Y. et al. Axial nonuniformity of geometric and mechanical properties of mouse aorta is increased during postnatal growth. Am. J. Physiol. Heart Circ. Physiol. 290(2):H657–H664, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Jawien, J. et al. Mouse models of experimental atherosclerosis. J. Physiol. Pharmacol. 55(3):503–517, 2004.

    CAS  PubMed  Google Scholar 

  23. Machii, M., A. E. Becker. Morphologic features of the normal aortic arch in neonates, infants, and children pertinent to growth. Ann. Thorac. Surg. 64(2):511–515, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima, Y. et al. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. Vasc. Biol. 14(1):133–140, 1994.

    Article  CAS  Google Scholar 

  25. Ohayon, J. et al. Elucidating atherosclerotic vulnerable plaque rupture by modeling cross substitution of ApoE−/− mouse and human plaque components stiffnesses. Biomech. Model. Mechanobiol. 11:801–813, 2012.

    Article  PubMed  Google Scholar 

  26. Pelisek, J. et al. Neovascularization and angiogenic factors in advanced human carotid artery stenosis. Circ. J. 76(5):1274–1282, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Plump, A. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353, 1992.

    Article  CAS  PubMed  Google Scholar 

  28. Reitman, J. et al. Yucatan miniature swine as a model for diet-induced atherosclerosis. Atherosclerosis 43(1):119–132, 1982.

    Article  CAS  PubMed  Google Scholar 

  29. Roach, M. R., A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.

    Article  CAS  PubMed  Google Scholar 

  30. Ross, M. H., W. Pawlina. Histology: A Text and Atlas. New York: Churchill Livingstone, 2010.

    Google Scholar 

  31. Schwartz, C. J. et al. Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio Cynocephalus). Virchows Arch. 405:175–191, 1985.

    Article  CAS  Google Scholar 

  32. Taber, L. A. Nonlinear Theory of Elasticity. Applications in Biomechanics. River Edge, NJ: World Scientific Publishing Co., 2004

    Book  Google Scholar 

  33. Teng, Z. et al. Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study. Acta Biomater. 10:5055–5063, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tracqui, P. et al. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy. J. Struct. Biol. 174:115–123, 2011.

    Article  PubMed  Google Scholar 

  35. Villasana, L. et al. Dose- and ApoE isoform-dependent cognitive injury after cranial Fe-56 irradiation in female mice. Radiat. Res. 179(4):493–500, 2013.

    Article  CAS  PubMed  Google Scholar 

  36. Wagenseil, J. E. et al. The importance of elastin to aortic development in mice. Am. J. Physiol. Heart Circ. Physiol. 299:H257–H264, 2010.

    Article  CAS  PubMed  Google Scholar 

  37. Wagenseil, J. E. et al. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am. J. Physiol. Heart Circ. Physiol. 289:H1209–H1217, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wagner, W. D. Risk factors in pigeons genetically selected for increased atherosclerosis susceptibility. Atherosclerosis 31(4):453–463, 1978.

    Article  CAS  PubMed  Google Scholar 

  39. Walsh, M. T. et al. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J .Biomech. 47:793–804, 2014.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y.-X. et al. Increased aortic stiffness assessed by pulse wave velocity in apolipoprotein E-deficient mice. Am. J. Physiol. - Heart Circ. Physiol. 278(2):H428–H434, 2000.

    CAS  PubMed  Google Scholar 

  41. Weiss, J. A. et al. Deoxycorticosterone acetate salt hypertension in apolipoprotein E−/− mice results in accelerated atherosclerosis: the role of angiotensin II. Hypertension 51:218–24, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Wells, S. M. et al. Determinants of mechanical properties in the developing ovine thoracic aorta. Am. J. Physiol. - Heart Circ. Physiol. 277(4):H1385–H1391, 1999.

    CAS  Google Scholar 

  43. Wolinsky, H.,  S. Glagov. A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20(1):99–111, 1967.

    Article  CAS  PubMed  Google Scholar 

  44. Wong, L. C. Y., B. L. Langille. Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow. Circ. Res. 78(5):799–805, 1996.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, S. H. et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Proc. Natl. Acad. Sci. USA 258(5081):468–471, 1992.

    CAS  Google Scholar 

Download references

Acknowledgments

Support from the Spanish Ministry of Economy and Competitiveness through the research projects DPI2013-44391-P and PRI-AIBDE-2011-1216, the Department of Industry and Innovation (Government of Aragon) through the research group Grant T88 (Fondo Social Europeo) and from the University of Zaragoza through the research project UZ2008-BIO-21 is highly appreciated. The experimental tests have been performed by the ICTS “NANBIOSIS”, more specifically by the Tissue & Scaffold Characterization Unit (U13) of the CIBER in Bioengineering, Biomaterials & Nanomedicne (CIBER-BBN at the University of Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Peña.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

M. Cilla and M. M. Pérez have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilla, M., Pérez, M.M., Peña, E. et al. Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE−/− Mice. Ann Biomed Eng 44, 2202–2217 (2016). https://doi.org/10.1007/s10439-015-1486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1486-1

Keywords

Navigation