Skip to main content

Advertisement

Log in

Determination and Finite Element Validation of the WYPIWYG Strain Energy of Superficial Fascia from Experimental Data

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

What-You-Prescribe-Is-What-You-Get (WYPIWYG) procedures are a novel and general phenomenological approach to modelling the behavior of soft materials, applicable to biological tissues in particular. For the hyperelastic case, these procedures solve numerically the nonlinear elastic material determination problem. In this paper we show that they can be applied to determine the stored energy density of superficial fascia. In contrast to the usual approach, in such determination no user-prescribed material parameters and no optimization algorithms are employed. The strain energy densities are computed solving the equilibrium equations of the set of experiments. For the case of superficial fascia it is shown that the mechanical behavior derived from such strain energies is capable of reproducing simultaneously the measured load-displacement curves of three experiments to a high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abbasi, M., M. S. Barakat, K. Vahidkhah, and A. N. Azadani. Characterization of three–dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. Mater., in press. doi: 10.1016/j.jmbbm.2016.04.031.

  2. Chandran, P.L., and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128:259–270, 2006

    Article  PubMed  Google Scholar 

  3. Chen, H., Y. Liu, X. Zhao, Y. Lanir, and G. S. Kassab. A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solid 59(9):1823–1837, 2011

    Article  Google Scholar 

  4. Cortes, D. H., S. P. Lake, J. A. Kadlowec, L. J. Soslowsky, and D. M. Elliott (2010). Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model. Mechanobiol. 9(5), 651–658, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart. Circ. Physiol. 283(6), H2650–H2659, 2002

    Article  CAS  PubMed  Google Scholar 

  6. Eng, C. M., F. Q. Pancheri, D. E. Lieberman, A. S. Biewener, and L. Dorfman. Directional differences in the biaxial material properties of fascia lata and the implications for fascia function. Ann. Biomed. Eng. 42:1224–1237, 2014.

    Article  PubMed  Google Scholar 

  7. Evans, S.L., and C. A. Holt. Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modelling. J. Strain Anal. 44:337–345, 2009.

    Article  Google Scholar 

  8. Freed, A. D., D. R. Einstein, and I. Vesely. Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4(2–3):100–117, 2005

    Article  PubMed  Google Scholar 

  9. Gasser, T., R. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fiber orientations. J. R. Soc. Interface, 3:13–35, 2006.

    Article  Google Scholar 

  10. Groves, R.B., S. A. Coulman, J. C. Birchall, and S. L. Evans. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and mourine skin. J. Mech. Behav. Biomed. Mater. 18:167–180, 2013.

    Article  PubMed  Google Scholar 

  11. Holzapfel, G.A., T. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–18, 2000.

    Article  Google Scholar 

  12. Holzapfel, G.A., and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. Lond. A 367(1902), 3445–3475, 2009.

    Article  Google Scholar 

  13. Holzapfel, G. A., and R. W. Ogden. On the tension-compression switch in soft fibrous solids. Eur. J. Mech. A, 49:561–569, 2015.

    Article  Google Scholar 

  14. Horgan, C.O., and J. G. Murphy. Simple shearing of soft biological tissues. Proc. R. Soc. Lond. A 467: 760–777, 2011.

    Article  Google Scholar 

  15. Humphrey, J.D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2013.

    Google Scholar 

  16. Lake, S.P., M. F. Hadi, V. K. Lai, and V. H. Barocas. Mechanics of a fiber network within a non-fibrilar matrix: model and comparison with collagen-agarose cogels. Ann. Biomed. Eng. 40(10):2111–2121, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lanir, Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6):423–436, 1979.

    Article  CAS  PubMed  Google Scholar 

  18. Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16(1):1–12, 1983.

    Article  CAS  PubMed  Google Scholar 

  19. Latorre, M., F. and J. Montáns. Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput. Struct. 122:13–26, 2013.

    Article  Google Scholar 

  20. Latorre, M., F. J. Montáns. What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput. Mech. 53(6): 1279–1298, 2014.

    Article  Google Scholar 

  21. Latorre, M., F. J. Montáns. Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur. J. Mech. A 53:99–106. 2015.

    Article  Google Scholar 

  22. Latorre, M., and F. J. Montáns. On the tension-compression switch of the Gasser-Ogden-Holzapfel model: Analysis and a new pre-integrated proposal. J. Mech. Behav. Biomed. Mater. 57, 175–189, 2016.

    Article  PubMed  Google Scholar 

  23. Li, K., R. W. Ogden, and G. A. Holzapfel. Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur. J. Mech. A 57, 178–193, 2016.

    Article  Google Scholar 

  24. Murphy, J.G. Evolution of anisotropy in soft tissue. Proc. R. Soc. Lond. A 470 (2161), 20130548, 2014.

    Article  Google Scholar 

  25. Pancheri, F.Q., C. M. Eng, D. E. Lieberman, A. S. Biewene, and L. Dorfman. A constitutive description of the anisotropic response of the fascia lata. J. Mech. Behav. Biomed. Mater. 30:306–323, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz-Alejos, D., J. A. Peña, M. M. Perez, and E. Peña. Experiments and constitutive model for deep and superficial fascia. Digital image correlation and finite element validation. Strain, 2016. in press. doi:10.1111/str.12198.

  27. Skacel, P., and J. Bursa. Poisson’s ratio of arterial wall–Inconsistency of constitutive models with experimental data. J. Mech. Behav. Biomed. Mater. 54, 316–327, 2016.

    Article  PubMed  Google Scholar 

  28. Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9: 9036–9048, 2013.

    Article  CAS  PubMed  Google Scholar 

  29. Sommer, G., A.J. Schriefl, M. Andra, M. Sacherer, C. Viertler, H. Wolinski, and G.A. Holzapfel. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24: 172–192, 2015.

    Article  PubMed  Google Scholar 

  30. Stylianopoulos, T., and V. H. Barocas. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129(4): 611–618, 2007.

    Article  PubMed  Google Scholar 

  31. Sussman, T., and K. J. Bathe. A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun. Numer. Methods Eng. 25(1):53–63, 2009.

    Article  Google Scholar 

  32. Tian, L., J. Henningsen J, M. R. Salick, W. C. Crone, M. Gunderson, S. H. Dailey, and N. C. Chesler. Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests. J. Mech. Behav. Biomed. Mater. 47, 107–113, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, H.Q., Y.Y. Wei YY, T. Sacks, Z. Wu, and Z.J. Luo. Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskelet. Disord. 10:105–110, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weiss, J. A., J. C. Gardines, and C. Bonifasi-Lista. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35:943–950, 2002.

    Article  PubMed  Google Scholar 

  35. Zang, L., S. P. Lake, V. K. Lai, C. R. Picu, V. H. Barocas, and M. S. Shephard. A coupled fiber-matrix model demonstrates highly inhomogeneous microstructural interactions in soft tussues under tensile load. J. Biomech. Eng. 135(1):011008, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

Partial financial support for this work has been given by Grants DPI2015-69801-R and DPI2013-44391-P from the Dirección General de Proyectos de Investigación of the Ministerio de Economía y Competitividad of Spain. F.J. Montáns also acknowledges the support of the Department of Mechanical and Aerospace Engineering of University of Florida during the sabbatical period in which this paper was finished, and Ministerio de Educación Cultura y Deporte of Spain for the financial support for that stay under Grant PRX15/00065. The ADINA program license used for this work has been a courtesy of ADINA R&D to the Universidad Politécnica de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Montáns.

Additional information

Communicated by Eiji Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latorre, M., Peña, E. & Montáns, F.J. Determination and Finite Element Validation of the WYPIWYG Strain Energy of Superficial Fascia from Experimental Data. Ann Biomed Eng 45, 799–810 (2017). https://doi.org/10.1007/s10439-016-1723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1723-2

Keywords

Navigation