Skip to main content

Advertisement

Log in

Development of a Smart Pump for Monitoring and Controlling Intraocular Pressure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Animal models of ocular hypertension are important for glaucoma research but come with experimental costs. Available methods of intraocular pressure (IOP) elevation are not always successful, the amplitude and time course of IOP changes are unpredictable and irreversible, and IOP measurement by tonometry is laborious. Here we present a novel system for monitoring and controlling IOP without these limitations. It consists of a cannula implanted in the anterior chamber of the eye, a pressure sensor that continually measures IOP, and a bidirectional pump driven by control circuitry that can infuse or withdraw fluid to hold IOP at user-desired levels. A portable version was developed for tethered use on rats. We show that rat eyes can be cannulated for months without causing significant anatomical or physiological damage although the animal and its eyes freely move. We show that the system measures IOP with <0.7 mmHg resolution and <0.3 mmHg/month drift and can maintain IOP within a user-specified window of desired levels for any duration necessary. We conclude that the system is ready for cage- or bench-side applications. The results lay the foundation for an implantable version that would give glaucoma researchers unprecedented knowledge and control of IOP in rats and potentially larger animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abrams, L. S., S. Vitale, and H. D. Jampel. Comparison of three tonometers for measuring intraocular pressure in rabbits. Investig. Ophthalmol. Vis. Sci. 37:940–944, 1996.

    CAS  Google Scholar 

  2. Akaishi, T., N. Ishida, A. Shimazaki, H. Hara, and Y. Kuwayama. Continuous monitoring of circadian variations in intraocular pressure by telemetry system throughout a 12-week treatment with timolol maleate in rabbits. J. Ocular Pharmacol. Ther. 21:436–444, 2005.

    Article  CAS  Google Scholar 

  3. Akula, J. D., T. L. Favazza, J. A. Mocko, I. Y. Benador, A. L. Asturias, M. S. Kleinman, R. M. Hansen, and A. B. Fulton. The anatomy of the rat eye with oxygen-induced retinopathy. Doc. Ophthalmol. 120:41–50, 2010.

    Article  PubMed  Google Scholar 

  4. Asrani, S., R. Zeimer, J. Wilensky, D. Gieser, S. Vitale, and K. Lindenmuth. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J. Glaucoma 9:134–142, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Bengtsson, B., M. C. Leske, L. Hyman, and A. Heijl. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology 114:205–209, 2007.

    Article  PubMed  Google Scholar 

  6. Berdahl, J. P., M. P. Fautsch, S. S. Stinnett, and R. R. Allingham. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case–control study. Investig. Ophthalmol. Vis. Sci. 49:5412–5418, 2008.

    Article  Google Scholar 

  7. Chauhan, B. C., J. Pan, M. L. Archibald, T. L. LeVatte, M. E. Kelly, and F. Tremblay. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Investig. Ophthalmol. Vis. Sci. 43:2969–2976, 2002.

    Google Scholar 

  8. Downs, J. C., C. F. Burgoyne, W. P. Seigfreid, J. F. Reynaud, N. G. Strouthidis, and V. Sallee. 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Investig. Ophthalmol. Vis. Sci. 52:7365–7375, 2011.

    Article  Google Scholar 

  9. Fitt, A. D., and G. Gonzalez. Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber. Bull. Math. Biol. 68(1):53–71, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Gaasterland, D., and C. Kupfer. Experimental glaucoma in the rhesus monkey. Investig. Ophthalmol. Vis. Sci. 13:455–457, 1974.

    CAS  Google Scholar 

  11. Ha, D., W. N. de Vries, S. W. John, P. P. Irazoqui, and W. J. Chappell. Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed. Microdevices 14:207–215, 2012.

    Article  CAS  PubMed  Google Scholar 

  12. Kee, C., T. Hong, and K. Choi. A sensitive ocular perfusion apparatus measuring outflow facility. Curr. Eye Res. 16:1198–1201, 1997.

    Article  CAS  PubMed  Google Scholar 

  13. Leonardi, M., E. M. Pitchon, A. Bertsch, P. Renaud, and A. Mermoud. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 87:433–437, 2009.

    Article  PubMed  Google Scholar 

  14. Leske, M. C., A. M. Connell, S. Y. Wu, L. G. Hyman, and A. P. Schachat. Risk factors for open-angle glaucoma: the Barbados eye studyleske. Arch. Ophthalmol. 113:918–924, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Li, R., and J. H. Liu. Telemetric monitoring of 24 h intraocular pressure in conscious and freely moving C57BL/6J and CBA/CaJ mice. Mol. Vis. 14:745–749, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, J. H., X. Zhang, D. F. Kripke, and R. N. Weinreb. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Investig. Ophthalmol. Vis. Sci. 44:1586–1590, 2003.

    Article  Google Scholar 

  17. Mansouri, K., F. A. Medeiros, A. Tafreshi, and R. N. Weinreb. Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor: safety, tolerability, and reproducibility in patients with glaucoma. Arch. Ophthalmol. 130:1534–1539, 2012.

    Article  Google Scholar 

  18. Mateijsen, D. J., H. J. Rosingh, H. P. Wit, and F. W. Albers. Perilymphatic pressure measurement in patients with Meniere’s disease. Eur. Arch. Otorhinolaryngol. 258:1–4, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. McLaren, J. W., R. F. Brubaker, and J. S. Fitzsimon. Continuous measurement of intraocular pressure in rabbits by telemetry. Investig. Ophthalmol. Vis. Sci. 37:966–975, 1996.

    CAS  Google Scholar 

  20. McNulty, R., H. Wang, R. T. Mathias, B. J. Ortwerth, R. J. Truscott, and S. Bassnett. Regulation of tissue oxygen levels in the mammalian lens. J. Physiol. 559:883–898, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mermoud, A., G. Baerveldt, D. S. Minckler, J. A. Prata, Jr, and N. A. Rao. Aqueous humor dynamics in rats. Graefes Arch. Clin. Exp. Ophthalmol. 234:S198–S203, 1996.

    Article  PubMed  Google Scholar 

  22. Moore, C. G., E. C. Johnson, and J. C. Morrison. Circadian rhythm of intraocular pressure in the rat. Curr. Eye Res. 15:185–191, 1996.

    Article  CAS  PubMed  Google Scholar 

  23. Morrison, J. C., C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson. A rat model of chronic pressure-induced optic nerve damage. Exp. Eye Res. 64:85–96, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Nusbaum, D. M., S. M. Wu, and B. J. Frankfort. Elevated intracranial pressure causes optic nerve and retinal ganglion cell degeneration in mice. Exp. Eye Res. 136:38–44, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quigley, H. A., and E. M. Addicks. Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Investig. Ophthalmol. Vis. Sci. 19:126–136, 1980.

    CAS  Google Scholar 

  26. Ren, R., J. B. Jonas, G. Tian, Y. Zhen, K. Ma, S. Li, H. Wang, B. Li, X. Zhang, and N. Wang. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 117:259–266, 2010.

    Article  PubMed  Google Scholar 

  27. Ruiz-Ederra, J., M. García, M. Hernández, H. Urcola, E. Hernández-Barbáchano, J. Araiz, and E. Vecino. The pig eye as a novel model of glaucoma. Exp. Eye Res. 81:561–569, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Salt, A. N., and A. K. Plontke. Endolymphatic hydrops pathophysiology and experimental models. Otolaryngol. Clin. N. Am. 43:971–983, 2010.

    Article  Google Scholar 

  29. Sappington, R. M., B. J. Carlson, S. D. Crish, and D. J. Calkins. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Investig. Ophthalmol. Vis. Sci. 51:207–216, 2010.

    Article  Google Scholar 

  30. Shareef, S. R., E. Garcia-Valenzuela, A. Salierno, J. Walsh, and S. C. Sharma. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp. Eye Res. 61:379–382, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Sommer, A. Intraocular pressure and glaucoma. Am. J. Ophthalmol. 107:186–188, 1989.

    Article  CAS  PubMed  Google Scholar 

  32. Takumida, M., N. Akagi, and M. Anniko. A new animal model for Meniere’s disease. Acta Otolaryngol. 128:263–271, 2008.

    Article  PubMed  Google Scholar 

  33. Todani, A., I. Behlau, M. A. Fava, F. Cade, D. G. Cherfan, F. R. Zakka, F. A. Jakobiec, Y. Gao, C. H. Dohlman, and S. A. Melki. Intraocular pressure measurement by radio wave telemetry. Investig. Ophthalmol. Vis. Sci. 52:9573–9580, 2011.

    Article  Google Scholar 

  34. Ueda, J., S. Sawaguchi, T. Hanyu, K. Yaoeda, T. Fukuchi, H. Abe, and H. Ozawa. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn. J. Ophthalmol. 42:337–344, 1998.

    Article  CAS  PubMed  Google Scholar 

  35. Walter, P., U. Schnakenberg, G. vom Bögel, P. Ruokonen, C. Krüger, S. Dinslage, H. C. Lüdtke Handjery, H. Richter, W. Mokwa, M. Diestelhorst, and G. K. Krieglstein. Development of a completely encapsulated intraocular pressure sensor. Ophthalmic Res. 32:278–284, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Weber, A. J., and D. Zelenak. Experimental glaucoma in the primate induced by latex microspheres. J. Neurosci. Methods 111:39–48, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by NIH grant R21 EY023376 and a Thomas R. Lee Award from the BrightFocus Foundation. The authors thank Drs. Radouil Tzekov and Xiaolan Tang for assistance with histological processing, Dr. Wilfredo Moreno for consultations with controller design, and Dr. Curtis Margo for evaluating the pathology of implanted eyes. The authors declare the following intellectual interests: U.S. Patents 9022,968 B2 and 9314,375 B1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Passaglia.

Additional information

Associate Editor Leonidas D. Iasemidis oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 4637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bello, S.A., Malavade, S. & Passaglia, C.L. Development of a Smart Pump for Monitoring and Controlling Intraocular Pressure. Ann Biomed Eng 45, 990–1002 (2017). https://doi.org/10.1007/s10439-016-1735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1735-y

Keywords

Navigation