Skip to main content
Log in

Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patients with ventricular assist devices still suffer from high rates of adverse events. Since many of these complications are linked to the flow field within the pump, optimization of the device geometry is essential. To investigate design aspects that influence the flow field, we developed a centrifugal blood pump using industrial guidelines. We then systematically varied selected design parameters and investigated their effects on hemodynamics and hydraulic performance using computational fluid dynamics. We analysed the flow fields based on Eulerian and Lagrangian features, shear stress histograms and six indicators of hemocompatibility. Within the investigated range of clearance gaps (50500 µm), number of impeller blades (4–7), and semi-open versus closed shroud design, we found association of potentially damaging shear stress conditions with larger gap size and more blades. The extent of stagnation and recirculation zones was reduced with lower numbers of blades and a semi-open impeller, but it was increased with smaller clearance. The Lagrangian hemolysis index, a metric commonly applied to estimate blood damage, showed a negative correlation with hydraulic efficiency and no correlation with the Eulerian threshold-based metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Antaki, J. F., C. G. Diao, F. J. Shu, J. C. Wu, R. Zhao, and M. V. Kameneva. Microhaemodynamics within the blade tip clearance of a centrifugal turbodynamic blood pump. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 222:573–581, 2008.

    Article  CAS  Google Scholar 

  2. Arvand, A., N. Hahn, M. Hormes, M. Akdis, M. Martin, and H. Reul. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics. Artif. Organs 28:892–898, 2004.

    Article  PubMed  Google Scholar 

  3. Bludszuweit, C. Three dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19:590–596, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Bluestein, D., K. B. Chandran, and K. B. Manning. Towards non-thrombogenic performance of blood recirculating devices. Ann. Biomed. Eng. 38:1236–1256, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boës, S., G. Ochsner, R. Amacher, A. Petrou, M. Meboldt, and M. Schmid Daners. Control of the fluid viscosity in a mock circulation. Artif. Organs 1:10, 2017.

    Google Scholar 

  6. Chan, W. K., Y. W. Wong, Y. Ding, L. P. Chua, and S. C. M. Yu. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump. Artif. Organs 26:785–793, 2002.

    Article  CAS  PubMed  Google Scholar 

  7. Dewitz, T. S., T. C. Hung, R. R. Martin, and L. V. McIntire. Mechanical trauma in leukocytes. J. Lab. Clin. Med. 90:728–736, 1977.

    CAS  PubMed  Google Scholar 

  8. Fraser, K. H., M. E. Taskin, B. P. Griffith, and Z. J. Wu. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 33:263–280, 2011.

    Article  PubMed  Google Scholar 

  9. Fraser, K. H., T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu. A Quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J. Biomech. Eng. 134:081002, 2012.

    Article  PubMed  Google Scholar 

  10. Garon, A., and M.-I. Farinas. Fast three-dimensional numerical hemolysis approximation. Artif. Organs 28:1016–1025, 2004.

    Article  PubMed  Google Scholar 

  11. Graefe, R., A. Henseler, and U. Steinseifer. Multivariate assessment of the effect of pump design and pump gap design parameters on blood trauma. Artif. Organs 40:568–576, 2016.

    Article  CAS  PubMed  Google Scholar 

  12. Gülich, J. F. Centrifugal Pumps. Berlin Heidelberg: Springer, 2010. doi:10.1017/CBO9781107415324.004.

    Book  Google Scholar 

  13. Hellums, J. D. 1993 Whitaker lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.

    Article  CAS  PubMed  Google Scholar 

  14. Heuser, G., and R. Opitz. A Couette viscometer for short time shearing of blood. Biorheology 17:17–24, 1980.

    Article  CAS  PubMed  Google Scholar 

  15. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Correlation of in vivo clot deposition with the flow characteristics in the 50 cc Penn State artificial heart: a preliminary study. ASAIO J. 50:537–542, 2004.

    Article  PubMed  Google Scholar 

  16. Kim, N. J., C. Diao, K. H. Ahn, S. J. Lee, M. V. Kameneva, and J. F. Antaki. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump. Artif. Organs 33:468–474, 2009.

    Article  PubMed  Google Scholar 

  17. Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Hear. Lung Transplant. 34:1495–1504, 2015.

    Article  Google Scholar 

  18. Korakianitis, T., M. A. Rezaienia, G. M. Paul, A. Rahideh, M. T. Rothman, and S. Mozafari. Optimization of centrifugal pump characteristic dimensions for mechanical circulatory support devices. ASAIO J. 62:545–551, 2016.

    Article  PubMed  Google Scholar 

  19. Krabatsch, T., J. D. Schmitto, Y. Pya, D. Zimpfer, J. Garbade, V. Rao, M. Morshuis, S. Marasco, F. Beyersdorf, P. Sood, L. Damme, and I. Netuka. Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure-1 year results from the CE mark trial. J. Hear. Lung Transplant. 35:S9, 2016.

    Article  Google Scholar 

  20. Merrill, E. W. Rheology of blood. Physiol. Rev. 49:836–886, 1969.

    Google Scholar 

  21. Morbiducci, U., R. Ponzini, M. Nobili, D. Massai, F. M. Montevecchi, D. Bluestein, and A. Redaelli. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J. Biomech. 42:1952–1960, 2009.

    Article  PubMed  Google Scholar 

  22. Mozafari, S., M. A. Rezaienia, G. M. Paul, M. T. Rothman, P. Wen, and T. Korakianitis. The effect of geometry on the efficiency and hemolysis of centrifugal implantable blood pumps. ASAIO J. 63:53–59, 2017.

    Article  PubMed  Google Scholar 

  23. Nascimbene, A., S. Neelamegham, O. H. Frazier, J. L. Moake, and J. Dong. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 127:3133–3142, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nobili, M., U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. Maria Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J. Biomech. 41:2539–2550, 2008.

    Article  PubMed  Google Scholar 

  25. Ochsner, G., R. Amacher, A. Amstutz, A. Plass, M. Schmid Daners, H. Tevaearai, S. Vandenberghe, M. J. Wilhelm, and L. Guzzella. A novel interface for hybrid mock circulations to evaluate ventricular assist devices. IEEE Trans. Biomed. Eng. 60:507–516, 2013.

    Article  PubMed  Google Scholar 

  26. Schmitto, J. D., J. S. Hanke, S. V. Rojas, M. Avsar, and A. Haverich. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate III). J. Hear. Lung Transplant. 34:858–860, 2015.

    Article  Google Scholar 

  27. Taskin, M. E., K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, and Z. J. Wu. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 58:363–372, 2012.

    Article  PubMed  Google Scholar 

  28. Thamsen, B., B. Blümel, J. Schaller, C. O. Paschereit, K. Affeld, L. Goubergrits, and U. Kertzscher. Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD Rotary blood pumps. Artif. Organs 39:651–659, 2015.

    Article  PubMed  Google Scholar 

  29. Wu, J., J. F. Antaki, J. Verkaik, S. Snyder, and M. Ricci. Computational fluid dynamics-based design optimization for an implantable miniature Maglev pediatric ventricular assist device. J. Fluids Eng. 134:041101, 2012.

    Article  Google Scholar 

  30. Wu, J., J. F. Antaki, W. R. Wagner, T. A. Snyder, B. W. Paden, and H. S. Borovetz. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization. ASAIO J. 51:636–643, 2005.

    Article  PubMed  Google Scholar 

  31. Wu, J., B. E. Paden, H. S. Borovetz, and J. F. Antaki. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artif. Organs 34:402–411, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu, J., K. Shimmei, K. Tani, K. Niikura, and J. Sato. CFD-based design optimization for hydro turbines. J. Fluids Eng. 129:159–168, 2007.

    Article  Google Scholar 

  33. Yu, H., G. Janiga, and D. Thévenin. Computational fluid dynamics-based design optimization method for archimedes screw blood pumps. Artif. Organs 40:341–352, 2016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Swiss National Science Foundation through Grant 200021_147193 CINDY, the Marie Heim-Vögtlin fellowship PMPDP2_151255, NCCR Kidney.CH and the Stavros Niarchos Foundation. This work is part of the Zurich Heart project under the umbrella of University Medicine Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kurtcuoglu.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiegmann, L., Boës, S., de Zélicourt, D. et al. Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility. Ann Biomed Eng 46, 417–428 (2018). https://doi.org/10.1007/s10439-017-1951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1951-0

Keywords

Navigation