Skip to main content
Log in

Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 14 May 2018

This article has been updated

ABSTRACT

We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot–ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

REFERENCES

  1. Ackermann, M., and A. J. van den Bogert. Optimality principles for model-based prediction of human gait. J. Biomech. 43:1055–1060, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akbarshahi, M., A. G. Schache, J. W. Fernandez, R. Baker, S. Banks, and M. G. Pandy. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J. Biomech. 43:1292–1301, 2010.

    Article  PubMed  Google Scholar 

  3. Anderson, F. C., and M. G. Pandy. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2:201–231, 1999.

    Article  Google Scholar 

  4. Anderson, F. C., and M. G. Pandy. Dynamic optimization of human walking. J. Biomech. Eng. Trans. ASME 123:381–390, 2001.

    Article  CAS  Google Scholar 

  5. Correa, T. A., R. Baker, H. K. Graham, and M. G. Pandy. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. J. Biomech. 44:2096–2105, 2011.

    Article  PubMed  Google Scholar 

  6. De Groote, F., A. L. Kinney, A. V. Rao, and B. J. Fregly. Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44(10):2922–2936, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  Google Scholar 

  8. D’Lima, D. D., S. Patil, N. Steklov, S. Chien, and C. W. Colwell, Jr. In vivo knee moments and shear after total knee arthroplasty. J. Biomech. 40(Suppl 1):S11–S17, 2007.

    Article  PubMed  Google Scholar 

  9. Fok, L. A., A. G. Schache, K. M. Crossley, Y. C. Lin, and M. G. Pandy. Patellofemoral joint loading during stair ambulation in people with patellofemoral osteoarthritis. Arthritis Rheum. 65:2059–2069, 2013.

    Article  PubMed  Google Scholar 

  10. Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.

    Article  PubMed  Google Scholar 

  11. Guess, T. M., A. P. Stylianou, and M. Kia. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait. J. Biomech. Eng. Trans. ASME 136(2):021032, 2014.

    Article  Google Scholar 

  12. Hatze, H. The complete optimization of a human motion. Math. Biosci. 28:99–135, 1976.

    Article  Google Scholar 

  13. Higginson, J. S., F. E. Zajac, R. R. Neptune, S. A. Kautz, and S. L. Delp. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J. Biomech. 39:1769–1777, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Kaplan, M. L., and J. H. Heegaard. Predictive algorithms for neuromuscular control of human locomotion. J. Biomech. 34:1077–1083, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, H. J., J. W. Fernandez, M. Akbarshahi, J. P. Walter, B. J. Fregly, and M. G. Pandy. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant. J. Orthop. Res. 27:1326–1331, 2009.

    Article  PubMed  Google Scholar 

  16. Kinney, A. L., T. F. Besier, D. D. D’Lima, and B. J. Fregly. Update on grand challenge competition to predict in vivo knee loads. J. Biomech. Eng. 135:021012, 2013.

    Article  PubMed  Google Scholar 

  17. Kirking, B., J. Krevolin, C. Townsend, C. W. Colwell, and D. D. D’Lima. A multiaxial force-sensing implantable tibial prosthesis. J. Biomech. 39:1744–1751, 2006.

    Article  PubMed  Google Scholar 

  18. Lai, A., A. G. Schache, Y. C. Lin, and M. G. Pandy. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. J. Exp. Biol. 217:3159–3168, 2014.

    Article  PubMed  Google Scholar 

  19. Lim, Y. P., Y. C. Lin, and M. G. Pandy. Effects of step length and step frequency on lower-limb muscle function in human gait. J. Biomech. 57:1–7, 2017.

    Article  PubMed  Google Scholar 

  20. Lin, Y. C., L. A. Fok, A. G. Schache, and M. G. Pandy. Muscle coordination of support, progression and balance during stair ambulation. J. Biomech. 48:340–347, 2015.

    Article  PubMed  Google Scholar 

  21. Lin, Y. C., R. T. Haftka, N. V. Queipo, and B. J. Fregly. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements. J. Biomech. Eng. Trans. ASME 131(4):041010, 2009.

    Article  Google Scholar 

  22. Lin, Y. C., R. T. Haftka, N. V. Queipo, and B. J. Fregly. Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med. Eng. Phys. 32:584–594, 2010.

    Article  PubMed  Google Scholar 

  23. Lin, Y. C., and M. G. Pandy. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. J. Biomech. 59:1–8, 2017.

    Article  PubMed  Google Scholar 

  24. Lu, T. W., and J. J. O’Connor. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32:129–134, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Meyer, A. J., I. Eskinazi, J. N. Jackson, A. V. Rao, C. Patten, and B. J. Fregly. Muscle synergies facilitate computational prediction of subject-specific walking motions. Front. Bioeng. Biotechnol. 4:77, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miller, R. H., and J. Hamill. Optimal footfall patterns for cost minimization in running. J. Biomech. 48:2858–2864, 2015.

    Article  PubMed  Google Scholar 

  27. Moissenet, F., L. Cheze, and R. Dumas. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. 47:50–58, 2014.

    Article  PubMed  Google Scholar 

  28. Ong, C. F., J. L. Hicks, and S. L. Delp. Simulation-based design for wearable robotic systems: an optimization framework for enhancing a standing long jump. IEEE Trans. Biomed. Eng. 63:894–903, 2016.

    Article  PubMed  Google Scholar 

  29. Pandy, M. G. Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3:245–273, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Pandy, M. G., F. E. Zajac, E. Sim, and W. S. Levine. An optimal control model for maximum-height human jumping. J. Biomech. 23:1185–1198, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Porsa, S., Y. C. Lin, and M. G. Pandy. Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Ann. Biomed. Eng. 44:2542–2557, 2016.

    Article  PubMed  Google Scholar 

  32. Raasch, C. C., F. E. Zajac, B. M. Ma, and W. S. Levine. Muscle coordination of maximum-speed pedaling. J. Biomech. 30:595–602, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Rajagopal, A., C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63:2068–2079, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sasaki, K., and R. R. Neptune. Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 34:2780–2784, 2010.

    Article  Google Scholar 

  35. Serrancoli, G., A. L. Kinney, B. J. Fregly, and J. M. Font-Llagunes. Neuromusculoskeletal model calibration significantly affects predicted knee contact forces for walking. J. Biomech. Eng. 2016. https://doi.org/10.1115/1.4033673.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seth, A., and M. G. Pandy. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J. Biomech. 40:356–366, 2007.

    Article  PubMed  Google Scholar 

  37. Shelburne, K. B., M. R. Torry, and M. G. Pandy. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 24:1983–1990, 2006.

    Article  PubMed  Google Scholar 

  38. Sritharan, P., Y. C. Lin, and M. G. Pandy. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 30:1586–1595, 2012.

    Article  PubMed  Google Scholar 

  39. Sritharan, P., Y. C. Lin, S. E. Richardson, K. M. Crossley, T. B. Birmingham, and M. G. Pandy. Musculoskeletal loading in the symptomatic and asymptomatic knees of middle-aged osteoarthritis patients. J. Orthop. Res. 35:321–330, 2017.

    Article  PubMed  Google Scholar 

  40. Stagni, R., S. Fantozzi, A. Cappello, and A. Leardini. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin. Biomech. 20:320–329, 2005.

    Article  Google Scholar 

  41. Steele, K. M., M. S. Demers, M. H. Schwartz, and S. L. Delp. Compressive tibiofemoral force during crouch gait. Gait Posture 35:556–560, 2012.

    Article  PubMed  Google Scholar 

  42. Thelen, D. G., F. C. Anderson, and S. L. Delp. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36:321–328, 2003.

    Article  PubMed  Google Scholar 

  43. Thelen, D. G., K. W. Choi, and A. M. Schmitz. Co-simulation of neuromuscular dynamics and knee mechanics during human walking. J. Biomech. Eng. 136:021033, 2014.

    Article  PubMed  Google Scholar 

  44. Umberger, B. R. Stance and swing phase costs in human walking. J. R. Soc. Interface 7:1329–1340, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vansoest, A. J., A. L. Schwab, M. F. Bobbert, and G. J. V. Schenau. The influence of the biarticularity of the gastrocnemius-muscle on vertical-jumping achievement. J. Biomech. 26:1–8, 1993.

    Article  CAS  Google Scholar 

  46. Walter, J. P., and M. G. Pandy. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling. Med. Eng. Phys. 48:196–205, 2017.

    Article  PubMed  Google Scholar 

  47. Winters, J. M., and L. Stark. Estimated mechanical-properties of synergistic muscles involved in movements of a variety of human joints. J. Biomech. 21:1027–1041, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Discovery Projects Grant from the Australian Research Council (DP160104366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chung Lin.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Walter, J.P. & Pandy, M.G. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait. Ann Biomed Eng 46, 1216–1227 (2018). https://doi.org/10.1007/s10439-018-2026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2026-6

Keywords

Navigation