Skip to main content
Log in

Role of Dynamic Loading on Early Stage of Bone Fracture Healing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

After fracture, mesenchymal stem cells (MSCs) and growth factors migrate into the fracture callus to exert their biological actions. Previous studies have indicated that dynamic loading induced tissue deformation and interstitial fluid flow could produce a biomechanical environment which significantly affects the healing outcomes. However, the fundamental relationship between the various loading regimes and different healing outcomes has not still been fully understood. In this study, we present an integrated computational model to investigate the effect of dynamic loading on early stage of bone fracture healing. The model takes into account cell and growth factor transport under dynamic loading, and mechanical stimuli mediated MSC differentiation and tissue production. The developed model was firstly validated by the available experimental data, and then implemented to identify the loading regimes that produce the optimal healing outcomes. Our results demonstrated that dynamic loading enhances MSC and growth factor transport in a spatially dependent manner. For example, compared to free diffusion, dynamic loading could significantly increase MSCs concentration in endosteal zone; and chondrogenic growth factors in both cortical and periosteal zones in callus. Furthermore, there could be an optimal dynamic loading regime (e.g. 10% strain at 1 Hz) which could potentially significant enhance endochondral ossification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Andreykiv, A., F. van Keulen, and P. J. Prendergast. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech. Model. Mechanobiol. 7:443–461, 2008.

    Article  CAS  PubMed  Google Scholar 

  2. Augat, P., J. Merk, S. Wolf, and L. Claes. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing. J. Orthop. Trauma 15:54–60, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Bailon-Plaza, A., and M. C. van der Meulen. A mathematical framework to study the effects of growth factor influences on fracture healing. J. Theor. Biol. 212:191–209, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Bailón-Plaza, A., and M. C. H. van der Meulen. Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J. Biomech. 36:1069–1077, 2003.

    Article  PubMed  Google Scholar 

  5. Barker, M. K., and B. B. Seedhom. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime? Rheumatology (Oxford) 40:274–284, 2001.

    Article  CAS  Google Scholar 

  6. Barnes, G. L., P. J. Kostenuik, L. C. Gerstenfeld, and T. A. Einhorn. Growth factor regulation of fracture repair. J. Bone Miner. Res. 14:1805–1815, 1999.

    Article  CAS  PubMed  Google Scholar 

  7. Bishop, N., M. Van Rhijn, I. Tami, R. Corveleijn, E. Schneider, and K. Ito. Shear does not necessarily inhibit bone healing. Clin. Orthop. Relat. Res. 443:307–314, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Bonassar, L. J., A. J. Grodzinsky, E. H. Frank, S. G. Davila, N. R. Bhaktav, and S. B. Trippel. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19:11–17, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Bottlang, M., J. Doornink, T. J. Lujan, D. C. Fitzpatrick, J. L. Marsh, P. Augat, B. von Rechenberg, M. Lesser, and S. M. Madey. Effects of construct stiffness on healing of fractures stabilized with locking plates. JBJS 92:12–22, 2010.

    Article  Google Scholar 

  10. Chao, E. Y., N. Inoue, J. J. Elias, and H. Aro. Enhancement of fracture healing by mechanical and surgical intervention. Clin. Orthop. Relat. Res. 355:S163–S178, 1998.

    Article  Google Scholar 

  11. Checa, S., and P. J. Prendergast. A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann. Biomed. Eng. 37:129–145, 2009.

    Article  PubMed  Google Scholar 

  12. Cheng, H., W. Jiang, F. M. Phillips, R. C. Haydon, Y. Peng, L. Zhou, H. H. Luu, N. An, B. Breyer, P. Vanichakarn, J. P. Szatkowski, J. Y. Park, and T. C. He. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). Urol. Oncol. 22:79–80, 2004.

    Article  Google Scholar 

  13. Cho, T. J., L. C. Gerstenfeld, and T. A. Einhorn. Differential temporal expression of members of the transforming growth factor β superfamily during murine fracture healing. J. Bone Miner. Res. 17:513–520, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Claes, L., R. Grass, T. Schmickal, B. Kisse, C. Eggers, H. Gerngross, W. Mutschler, M. Arand, T. Wintermeyer, and A. Wentzensen. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbeck’s Arch. Surg. 387:146–152, 2002.

    Article  CAS  Google Scholar 

  15. Claes, L. E., and C. A. Heigele. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32:255–266, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Claes, L. E., C. A. Heigele, C. Neidlinger-Wilke, D. Kaspar, W. Seidl, K. J. Margevicius, and P. Augat. Effects of mechanical factors on the fracture healing process. Clin. Orthop. Relat. Res. 355:S132–S147, 1998.

    Article  Google Scholar 

  17. COMSOL. Multiphysics® v. 5.2. COMSOL AB, Stockholm, Sweden.

  18. Garcia-Aznar, J. M., J. H. Kuiper, M. J. Gomez-Benito, M. Doblare, and J. B. Richardson. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech. 40:1467–1476, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Gardiner, B., D. Smith, P. Pivonka, A. Grodzinsky, E. Frank, and L. Zhang. Solute transport in cartilage undergoing cyclic deformation. Comput Methods Biomech. Biomed. Eng. 10:265–278, 2007.

    Article  Google Scholar 

  20. Gardner, M. J., M. C. van der Meulen, D. Demetrakopoulos, T. M. Wright, E. R. Myers, and M. P. Bostrom. In vivo cyclic axial compression affects bone healing in the mouse tibia. J. Orthop. Res. 24:1679–1686, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gardnera, T. N., T. Stoll, L. Marks, S. Mishra, and M. Knothe. Tate. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture—an FEM study. J. Biomech. 33:415–425, 2000.

    Article  Google Scholar 

  22. Geris, L., A. Gerisch, C. Maes, G. Carmeliet, R. Weiner, J. Vander Sloten, and H. Van Oosterwyck. Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. Med. Biol. Eng. Comput. 44:280–289, 2006.

    Article  PubMed  Google Scholar 

  23. Geris, L., A. Gerisch, J. V. Sloten, R. Weiner, and H. V. Oosterwyck. Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251:137–158, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Geris, L., J. Vander Sloten, and H. Van Oosterwyck. Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech. Model. Mechanobiol. 9:713–724, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. González-Torres, L., M. Gómez-Benito, M. Doblaré, and J. García-Aznar. Influence of the frequency of the external mechanical stimulus on bone healing: a computational study. Med. Eng. Phys. 32:363–371, 2010.

    Article  PubMed  Google Scholar 

  26. Goodship, A., and J. Kenwright. The influence of induced micromovement upon the healing of experimental tibial fractures. Bone Jt. J. 67:650–655, 1985.

    Article  CAS  Google Scholar 

  27. Guérin, G., D. Ambard, and P. Swider. Cells, growth factors and bioactive surface properties in a mechanobiological model of implant healing. J. Biomech. 42:2555–2561, 2009.

    Article  PubMed  Google Scholar 

  28. Han, L., A. J. Grodzinsky, and C. Ortiz. Nanomechanics of the cartilage extracellular matrix. Annu. Rev. Mater. Res. 41:133–168, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harrison, L. J., J. L. Cunningham, L. Strömberg, and A. E. Goodship. Controlled induction of a pseudoarthrosis_a study using a rodent model. J. Orthop. Trauma 17:11–21, 2003.

    Article  PubMed  Google Scholar 

  30. Helm, C.-L., M. Fleury, A. Zisch, F. Boschetti, and M. Swartz. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA 102:15779–15784, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Henricson, A., A. Hulth, and O. Johnell. The cartilaginous fracture callus in rats. Acta Orthop. Scand. 58:244–248, 1987.

    Article  CAS  PubMed  Google Scholar 

  32. Hou, T., Q. Li, F. Luo, J. Xu, Z. Xie, X. Wu, and C. Zhu. Controlled dynamization to enhance reconstruction capacity of tissue-engineered bone in healing critically sized bone defects: an in vivo study in goats. Tissue Eng. Part A 16:201–212, 2009.

    Article  CAS  Google Scholar 

  33. Huiskes, R., W. Van Driel, P. Prendergast, and K. Søballe. A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci. 8:785–788, 1997.

    CAS  Google Scholar 

  34. Isaksson, H., C. C. van Donkelaar, R. Huiskes, and K. Ito. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J. Theor. Biol. 252:230–246, 2008.

    Article  PubMed  Google Scholar 

  35. Isaksson, H., W. Wilson, C. C. van Donkelaar, R. Huiskes, and K. Ito. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech. 39:1507–1516, 2006.

    Article  PubMed  Google Scholar 

  36. Ito, H. Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod. Rheumatol. 21:113–121, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. Jagodzinski, M., A. Breitbart, M. Wehmeier, E. Hesse, C. Haasper, C. Krettek, J. Zeichen, and S. Hankemeier. Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J. Biomech. 41:1885–1891, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Joyce, M. E., A. B. Roberts, M. B. Sporn, and M. E. Bolander. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J. Cell Biol. 110:2195–2207, 1990.

    Article  CAS  PubMed  Google Scholar 

  39. Joyce, M., R. Terek, S. Jingushi, and M. Bolander. Role of transforming growth factor-β in fracture repair. Ann. N. Y. Acad. Sci. 593:107–123, 1990.

    Article  CAS  PubMed  Google Scholar 

  40. Kenwright, J., J. Richardson, J. Cunningham, S. White, A. Goodship, M. Adams, P. Magnussen, and J. Newman. Axial movement and tibial fractures. A controlled randomised trial of treatment. Bone Jt. J. 73:654–659, 1991.

    Article  CAS  Google Scholar 

  41. Klein, P., H. Schell, F. Streitparth, M. Heller, J. P. Kassi, F. Kandziora, H. Bragulla, N. P. Haas, and G. N. Duda. The initial phase of fracture healing is specifically sensitive to mechanical conditions. J. Orthop. Res. 21:662–669, 2003.

    Article  PubMed  Google Scholar 

  42. Lacroix, D., and P. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35:1163–1171, 2002.

    Article  CAS  PubMed  Google Scholar 

  43. Lacroix, D., P. J. Prendergast, G. Li, and D. Marsh. Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med. Biol. Eng. Comput. 40:14–21, 2002.

    Article  CAS  PubMed  Google Scholar 

  44. Lauzon, M.-A., É. Bergeron, B. Marcos, and N. Faucheux. Bone repair: new developments in growth factor delivery systems and their mathematical modeling. J. Control. Release 162:502–520, 2012.

    Article  CAS  PubMed  Google Scholar 

  45. Marsell, R., and T. A. Einhorn. The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury 40:S4–S7, 2009.

    Article  PubMed  Google Scholar 

  46. Mauck, R. L., C. T. Hung, and G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125:602–614, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  47. McCartney, W., B. J. M. Donald, and M. S. J. Hashmi. Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading. J. Mater. Process. Technol. 169:476–484, 2005.

    Article  Google Scholar 

  48. McKibbin, B. The biology of fracture healing in long bones. J. Bone Jt. Surg. Br. 60-B:150–162, 1978.

    Article  CAS  Google Scholar 

  49. McMahon, L. A., A. J. Reid, V. A. Campbell, and P. J. Prendergast. Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. Ann. Biomed. Eng. 36:185–194, 2008.

    Article  PubMed  Google Scholar 

  50. Miramini, S., L. Zhang, M. Richardson, P. Mendis, and P. Ebeling. Influence of fracture geometry on bone healing under locking plate fixations: a comparison between oblique and transverse tibial fractures. Med. Eng. Phys. 38:1100–1108, 2016.

    Article  PubMed  Google Scholar 

  51. Miramini, S., L. Zhang, M. Richardson, P. Mendis, A. Oloyede, and P. Ebeling. The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation. Australas. Phys. Eng. Sci. Med. 39:123–133, 2016.

    Article  PubMed  Google Scholar 

  52. Moalli, M., N. Caldwell, P. Patil, and S. Goldstein. An in vivo model for investigations of mechanical signal transduction in trabecular bone. J. Bone Miner. Res. 15:1346–1353, 2000.

    Article  CAS  PubMed  Google Scholar 

  53. Ng, C., and M. Swartz. Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284:H1771–H1777, 2003.

    Article  CAS  PubMed  Google Scholar 

  54. Olsen, L., J. A. Sherratt, and P. K. Maini. A mechanochemical model for adult dermal wound contraction: on the permanence of the contracted tissue displacement profile. J. Theor. Biol. 177:113–128, 1995.

    Article  CAS  PubMed  Google Scholar 

  55. Pauwels, F. A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z. Anat. Entwicklungsgesch 121:478–515, 1960.

    Article  CAS  PubMed  Google Scholar 

  56. Peiffer, V., A. Gerisch, D. Vandepitte, H. V. Oosterwyck, and L. Geris. A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech. Model. Mechanobiol. 10:383–395, 2011.

    Article  PubMed  Google Scholar 

  57. Perren, S. M. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin. Orthop. Relat. Res. 138:175–196, 1979.

    Google Scholar 

  58. Perren, S. M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Jt. Surg. (Br. Vol.) 84:1093–1110, 2002.

    Article  Google Scholar 

  59. Polacheck, W., J. Charest, and R. Kamm. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. USA 108:11115–11120, 2011.

    Article  PubMed  Google Scholar 

  60. Postacchini, F., S. Gumina, D. Perugia, and C. De Martino. Early fracture callus in the diaphysis of human long bones: histologic and ultrastructural study. Clin. Orthop. Relat. Res. 310:18–228, 1995.

    Google Scholar 

  61. Prendergast, P. J., R. Huiskes, and K. Søballe. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30:539–548, 1997.

    Article  CAS  PubMed  Google Scholar 

  62. Solheim, E. Growth factors in bone. Int. Orthop. 22:410–416, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vetter, A., D. R. Epari, R. Seidel, H. Schell, P. Fratzl, G. N. Duda, and R. Weinkamer. Temporal tissue patterns in bone healing of sheep. J. Orthop. Res. 28:1440–1447, 2010.

    Article  PubMed  Google Scholar 

  64. Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8:1468, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wehner, T., L. Claes, F. Niemeyer, D. Nolte, and U. Simon. Influence of the fixation stability on the healing time—a numerical study of a patient-specific fracture healing process. Clin. Biomech. 25:606–612, 2010.

    Article  Google Scholar 

  66. Witt, F., G. N. Duda, C. Bergmann, and A. Petersen. Cyclic mechanical loading enables solute transport and oxygen supply in bone healing: an in vitro investigation. Tissue Eng. Part A 20:486–493, 2014.

    CAS  PubMed  Google Scholar 

  67. Wolf, S., A. Janousek, J. Pfeil, W. Veith, F. Haas, G. Duda, and L. Claes. The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clin. Biomech. 13:359–364, 1998.

    Article  Google Scholar 

  68. Wolf, J., A. White, M. Panjabi, and W. Southwick. Comparison of cyclic loading versus constant compression in the treatment of long-bone fractures in rabbits. J. Bone Jt. Surg. Am. 63:805–810, 1981.

    Article  Google Scholar 

  69. Yamaguchi, A. Regulation of differentiation pathway of skeletal mesenchymal cells in cell lines by transforming growth factor-β superfamily. In: Seminars in Cell Biology. New York: Elsevier, 1995, pp. 165–173.

  70. Zhang, L. Solute transport in cyclic deformed heterogeneous articular cartilage. Int. J. Appl. Mech. 3:507–524, 2011.

    Article  Google Scholar 

  71. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. Grodzinsky. The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch. Biochem. Biophys. 457:47–56, 2007.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. Grodzinsky. A fully coupled poroelastic reactive-transport model of cartilage. Mol. Cell. Biomech. 5:133, 2008.

    PubMed  Google Scholar 

  73. Zhang, L., B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky. Integrated model of IGF-I mediated biosynthesis in a deformed articular cartilage. J. Eng. Mech. 135:439–449, 2009.

    Article  Google Scholar 

  74. Zhang, L., S. Miramini, D. W. Smith, B. S. Gardiner, and A. J. Grodzinsky. Time evolution of deformation in a human cartilage under cyclic loading. Ann. Biomed. Eng. 43:1166–1177, 2015.

    Article  PubMed  Google Scholar 

  75. Zhang, L., M. Richardson, and P. Mendis. Role of chemical and mechanical stimuli in mediating bone fracture healing. Clin. Exp. Pharmacol. Physiol. 39:706–710, 2012.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihai Zhang.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Appendix A

Appendix A

Appendix A.1: Volume Fraction of Solid, Fluid and Solute

The volume fraction of solid, fluid and solute phase of the porous callus domain can be represented by \( \phi^{\text{s}} \), \( \phi^{\text{f}} \) and \( \phi^{\text{w}} \), respectively. As the volume of cells, growth factors and other nutrients are ignorable at tissue level compared to the volume of solid and fluid phase of the callus,27 we obtain:

$$ \phi^{\text{f}} + \phi^{\text{s}} \cong 1 $$
(A1.a)

The relationship between the medium volume based solute concentration (\( \bar{c}^{\text{w}} \)) and solvent volume based solute concentration (\( c^{\text{w}} \)) can be expressed as:

$$ \bar{c}^{\text{w}} = \phi^{\text{f}} c^{\text{w}} $$
(A1.b)

Similarly, the medium volume based tissue concentration (\( \bar{c}^{\text{s}} \)) can be expressed as:

$$ \bar{c}^{\text{s}} = (1 - \phi^{\text{f}})c^{\text{s}} $$

where \( c^{\text{s}} \) is solvent volume based tissue concentration. (A1.c)

Appendix A.2: MSC Diffusion and Differentiation

The diffusion coefficient of MSCs for the callus matrix23 as follows:

$$ D^{\text{m}} = \frac{{D^{\text{hm}} m}}{{(K^{\text{hm}})^{2} + m^{2}}} $$
(A2.a)

where \( D^{\text{hm}} \) and \( K^{\text{hm}} \) are coefficients of cell migration depending on the total matrix density (m) of the callus.

The chemical stimuli mediated differentiation rates of MSCs into chondrocyte (\( k_{\text{d}}^{c} \)) and osteoblast (\( k_{\text{d}}^{\text{b}} \)) can be expressed by using Hill function3 as follows:

$$ k_{\text{d}}^{\text{b}} = \frac{{Y_{1} g^{\text{b}}}}{{H_{1} + g^{\text{b}}}} $$
(A2.b)
$$ k_{\text{d}}^{c} = \frac{{Y_{2} g^{c}}}{{H_{2} + g^{c}}} $$
(A2.c)

where H1, H2, Y1 and Y2 are parameters representing growth factor mediated MSC differentiation. \( k_{\text{d}}^{\text{fb}} \) is assumed to be constant.54

Appendix A.3: Transport Equation for Cells and Growth Factors

The transport equations of fibroblasts (\( c^{\text{fb}} \)), chondrocytes (\( c^{c} \)), osteoblasts (\( c^{\text{b}} \)) can be expressed as:

$$ \frac{{\partial \bar{c}^{\alpha}}}{\partial t} = - \nabla \left({- D^{\alpha} \nabla \bar{c}^{\alpha} + {\mathbf{v}}^{\varvec{\text{f}}} \bar{c}^{\alpha}} \right) + S_{\text{p}}^{\alpha} - S_{\text{d}}^{\alpha} $$
(A3.a)
$$ S_{\text{p}}^{\alpha} = (k_{\text{d}}^{\alpha} + \lambda_{\text{d}}^{\alpha})c^{\text{m}} $$
(A3.b)

where, α = fb (fibroblasts), α = c (chondrocytes) and α = b (osteoblasts). \( S_{\text{p}}^{\alpha} \) is the production rate of α cells which is assumed to be the sum of chemical stimuli mediated production rate (\( k_{\text{d}}^{\alpha}) \) and mechanical stimuli mediated production rate (\( \lambda_{\text{d}}^{\alpha} \)). \( S_{\text{d}}^{\alpha} \) is the degradation rate of α cells and \( D^{\alpha} \) is the diffusion coefficient of α cells in fracture callus.

Chondrogenic growth factors (\( g^{c} \)) and osteogenic growth factors (\( g^{\text{b}} \))

The mass balance equation for chondrogenic (\( g^{\text{c}} \)) and osteogenic growth factor (\( g^{\text{b}} \)) is given by

$$ \frac{{\partial \bar{g}^{\beta}}}{\partial t} = - \nabla \cdot \left({- D^{\beta} \nabla \bar{g} ^{\beta} + {\mathbf{v}}^{\varvec{\text{f}}} \bar{g}^{\beta}} \right) + S_{\text{p}}^{\beta} - S_{\text{d}}^{\beta} $$
(A3.c)

where β = c (chondrogenic growth factors) and β = b (osteogenic growth factors). \( S_{\text{p}}^{\beta} \) and \( S_{\text{d}}^{\beta} \) are the production rate and degradation rate of growth factors, respectively. \( D^{\beta} \) is the diffusion coefficient of the growth factors in fracture callus.

Appendix A.4: Stimuli Index (S)

Stimuli Index S is obtained from interstitial fluid phase velocity \( ({\mathbf{v}}^{\text{f}}) \) and octahedral shear strain \( (\tau) \) within the callus.33

$$ S = \frac{\tau}{0.0375} + \frac{{{\mathbf{v}}^{\text{f}}}}{{3 \times 10^{- 6} (m/s)}} $$
(A4)

It is assumed that, during early stage of healing, low magnitude of stimuli index (S < 1) results in differentiation of osteoblast, moderate magnitude of stimuli index (1 < S < 3) favours differentiation of chondrocytes while high magnitude of stimuli index (S < 1) leads to fibroblast differentiation.51

Appendix A.5: Production of Tissues Due to Mechanical Stimuli

Similar to the cell differentiation pattern shown in Fig. 4, the production rate of fibrous tissue, cartilage and bone due to mechanical stimuli also depends on dynamic loading as follows:

$$ P_{\text{pm}}^{\gamma} = \left\{\begin{array}{*{20}l}P_{\text{pm}}^{\text{bs}} = \lambda_{\text{p}}^{\text{bs}}\bar{c}^{\text{b}}, & P_{\text{pm}}^{\text{cs}} = P_{\text{pm}}^{\text{fs}} = 0, & {\text{for}}\;S < 1 & ({\text{bone}}\;{\text{formation)}} \\ P_{\text{pm}}^{\text{cs}} = \lambda_{\text{p}}^{\text{cs}} \bar{c}^{c}, & P_{\text{pm}}^{\text{bs}} = P_{\text{pm}}^{\text{fs}} = 0, & {{\text{for}}\; 1 < S < 3} & ({\text{cartilage}}\;{\text{formation}}) \\ P_{\text{pm}}^{\text{fs}} = \lambda_{\text{p}}^{\text{fs}} \bar{c}^{\text{fb}}, & P_{\text{pm}}^{\text{bs}} = P_{\text{pm}}^{\text{cs}} = 0, & {\text{for}}\;S > 3 & ({\text{fibrous}}\;{\text{tissue}}\;{\text{formation}}) \end{array}\right.$$
(A5)

Appendix A.6: Balance of Linear Momentum

Assuming callus as homogeneous, isotropic and linear elastic mixture having no body and inertial forces, for an infinitesimal strain, the balance of linear momentum can be expressed as73:

$$ - \nabla p + \left({\lambda_{\text{s}} + 2\mu_{\text{s}}} \right)\nabla \left({\nabla {\mathbf{u}}^{\varvec{\text{s}}}} \right) + \mu_{\text{s}} \nabla^{2} {\mathbf{u}}^{\varvec{\text{s}}} = 0 $$
(A6.a)

where \( p \) is the interstitial fluid pressure; λs and μs are Lame’s constants; and \( {\mathbf{u}}^{\varvec{\text{s}}} \) is the solid phase displacement vector.

Conservation of Mass of Solid and Fluid Phases

From the mass balance equation for solid and fluid phase and Darcy’s law, the interstitial fluid motion within the callus 71, 74 can be expressed as

$$ \nabla \left({{\mathbf{v}}^{\varvec{\text{s}}} - \varvec{k}\nabla p} \right) = 0 $$
(A6.b)

where \( {\mathbf{v}}^{\varvec{\text{s}}} \) is the solid phase velocity, \( \varvec{k} \) is the hydraulic permeability tensor and \( p \) is the interstitial fluid pressure.

Appendix A.7: Cell and Growth Factor Uptake Ratio

The average normalised uptake ratio for cells and growth factors in each zone is computed as follows70:

$$ \bar{c}_{avg}^{\text{w}} = \frac{{\mathop \smallint \nolimits_{0}^{{V_{0}}} \bar{c}^{\text{w}} dV}}{{c_{0}^{\text{w}} V_{0}}} $$
(A7)
$$ \bar{g}_{avg}^{\text{w}} = \frac{{\mathop \smallint \nolimits_{0}^{{V_{0}}} \bar{g}^{\text{w}} dV}}{{g_{0}^{\text{w}} V_{0}}} $$

where \( c^{\text{w}} = c^{\text{m}}, c^{\text{fb}}, c^{\text{c}} and c^{\text{b}} \) for MSCs, fibroblasts, chondrocytes and osteoblasts concentration, \( g^{\text{w}} = g^{\text{b}} {\text{and}} g^{\text{c}} \) for osteogenic and chondrogenic growth factor concentration, respectively. \( c_{0}^{\text{w}} \) is the saturated concentration of particular cell over callus volume \( V_{0} \). The uptake of osteogenic and chondrogenic growth factors are normalised to their respective boundary conditions \( \left({g_{0}^{\text{w}} = g^{\text{b0}} \;{\text{and}}\;g^{\text{c0}}} \right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghimire, S., Miramini, S., Richardson, M. et al. Role of Dynamic Loading on Early Stage of Bone Fracture Healing. Ann Biomed Eng 46, 1768–1784 (2018). https://doi.org/10.1007/s10439-018-2083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2083-x

Keywords

Navigation