Skip to main content
Log in

Systematic Study on the Biomechanical Stability of C-Loop Intraocular Lenses: Approach to an Optimal Design of the Haptics

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To study the main design parameters that affect the mechanical stability of C-loop intraocular lenses, leading to an optimal design that minimizes the axial displacement, tilt and rotation. A total of 144 geometrical variations were studied on a 1-piece, non-angulated, C-loop hydrophobic acrylate intraocular lens. The study was performed in a finite element modeling simulation. The suitable set of variations was determined using a mixed-factorial analysis, allowing to analyse the impact of the different designs on the mechanical stability of the lens (compression force, axial displacement, tilt and rotation). The design parameters under study were: the length, width, thickness and opening angle of the haptic, the haptic–optic junction and the start of the haptic curvature. The compression (or reaction) force is affected by the haptic width, the haptic–optic junction, and the interaction between both. The axial displacement is mainly affected by the width and thickness of the haptic, and the size of the haptic–optic junction as well. The tilt is affected by the haptic thickness and the interaction between the haptic curvature and the haptic–optic junction. The rotation is affected by the start of the haptic curvature, the haptic–optic junction and the haptic width. The haptic–optic juntion is one of the most influential parameters affecting the four responses studied of the C-Loop IOL. The smaller the haptic–optic juntion, the better biomechanical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ale, J. B. Intraocular lens tilt and decentration: a concern for contemporary IOL designs. Nepal. J. Ophthalmol. 3:68–77, 2011.

    Article  CAS  Google Scholar 

  2. Alio, J. L., A. B. Plaza-Puche, R. Férnandez-Buenaga, J. Pikkel, and M. Maldonado. Multifocal intraocular lenses: an overview. Surv. Ophthalmol. 62:611–634, 2017.

    Article  Google Scholar 

  3. Alió, J. L., A. B. Plaza-Puche, J. Javaloy, M. J., Ayala, and A. Vega-Estrada. Clinical and optical intraocular performance of rotationally asymmetric multifocal IOL plate-haptic design versus C-loop haptic design. J. Refract. Surg. 29:252–259, 2013.

    Article  Google Scholar 

  4. Bozukova, D., C. Pagnoulle, and C. Jérôme. Biomechanical and optical properties of 2 new hydrophobic platforms for intraocular lenses. J. Cataract. Refract. Surg. 39:1404–1414, 2013.

    Article  Google Scholar 

  5. Bozukova, D., L. Werner, N. Mamalis, et al. Double-C loop platform in combination with hydrophobic and hydrophilic acrylic intraocular lens materials. J. Cataract. Refract. Surg. 41:1490–1502, 2015.

    Article  Google Scholar 

  6. BS EN ISO 11979-2:2014 Ophthalmic implants - Intraocular lenses. Part 2: Optical properties and test methods. BSI Standards Limited, 2014.

  7. BS EN ISO 11979-3:2012 Ophthalmic implants. Intraocular lenses. Mechanical properties and test methods. BSI Standards Limited, 2012

  8. Chang, D. F. Early rotational stability of the longer Staar toric intraocular lens. J. Cataract. Refract. Surg. 29:935–940, 2003.

    Article  Google Scholar 

  9. Chang, D. F. Comparative rotational stability of single-piece open-loop acrylic and plate-haptic silicone toric intraocular lenses. J. Cataract. Refract. Surg. ;34:1842–1847, 2008.

    Article  Google Scholar 

  10. Choi, M., M. Z. Lazo, M. Kang, M., J. Lee, and C. K. Joo. Effect of number and position of intraocular lens haptics on anterior capsule contraction: a randomized, prospective trial. BMC Ophthalmol. 18:78, 2018.

    Article  Google Scholar 

  11. Chua, W. H., L. H. Yuen, J. Chua, G. Teh, and W. E. Hill. Matched comparison of rotational stability of 1-piece acrylic and plate-haptic silicone toric intraocular lenses in Asian eyes. J. Cataract. Refract. Surg. 38:620–624, 2012.

    Article  Google Scholar 

  12. Crnej, A., N. Hirnschall, Y. Nishi, et al. Impact of intraocular lens haptic design and orientation on decentration and tilt. J. Cataract. Refract. Surg. 37:1768–1774, 2011.

    Article  Google Scholar 

  13. Draschl, P., N. Hirnschall, N. Luft, et al. Rotational stability of 2 intraocular lenses with an identical design and different materials. J. Cataract. Refract. Surg. 43:234–238, 2017.

    Article  Google Scholar 

  14. Hayashi, K. and H. Hayash. Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the lens capsule. J. Cataract. Refract. Surg. 31:337–342, 2005.

    Article  Google Scholar 

  15. Hunter, J. D. Matplotlib: a 2D graphics environment Comput. Sci. Eng. 9:90-95, 2007.

    Article  Google Scholar 

  16. Kumar, D. A., A. Amar, G. Prakash, S. Jacob, Y. Saravanan, and A. Agarwal. Evaluation of intraocular lens tilt with anterior segment optical coherence tomography. Am J Ophthalmol. 151:406–412.e2, 2011.

    Article  Google Scholar 

  17. Lane, S. S., P. Burgi, G. S. Milios, M. W. Orchowski, M. Vaughan, and E. Schwarte. Comparison of the biomechanical behavior of foldable intraocular lenses. J. Cataract. Refract. Surg. 30:2397–2402, 2004.

    Article  Google Scholar 

  18. Lane, S., S. Collins, K. K. Das, et al. Evaluation of intraocular lens stability. J. Cataract. Refract. Surg. 45(4):501–506, 2018

    Article  Google Scholar 

  19. Linnola, R. J., M. Sund, R. Ylönen, and T. Pihlajaniemi. Adhesion of soluble fibronectin, laminin, and collagen type IV to intraocular lens materials. J. Cataract. Refract. Surg. 25:1486–1491, 1999.

    Article  CAS  Google Scholar 

  20. Lombardo, M., G. Carbone, G. Lombardo, M. P. De-Santo, and R. Barberi. Alysis of intraocular lens surface adhesiveness by atomic force microscopy. J. Cataract. Refract. Surg. 35:1266–1272, 2009.

    Article  Google Scholar 

  21. Miháltz, K., M. Lasta, M. Burgmüller, P. V. Vécsei-Marlovits, and B. Weingessel. Comparison of two toric IOLs with different haptic design: optical aquality after 1 year. J. Ophthalmol. 2018:1–7, 2018.

    Article  Google Scholar 

  22. Montgomery, D. Design & Analysis of Experiments. 5ed. New York: Wiley, 2001.

    Google Scholar 

  23. Nagy, Z. Z, K. Kránitz, A. I. Takacs, K. Miháltz, I. Kovács, and M. C. Knorz. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J. Refract. Surg. 27:564–569, 2011.

    Article  Google Scholar 

  24. Garzón, N., F. Poyales, Z. B. Ortíz, J. L. Ruiz-García, and J. A. Quiroga. Evaluation of rotation and visual outcomes after implantation of monofocal and multifocal toric intraocular lenses. J. Refract. Surg. 31:90–97, 2015.

    Article  Google Scholar 

  25. Oliphant Travis, E. A Guide to NumPy . New York: Trelgol Publishing, 2006.

    Google Scholar 

  26. Patel, C. K., S. Ormonde, P. H. Rosen, and A. J. Bron. Postoperative intraocular lens rotation. Ophthalmology. 106:2190–2196, 1999.

    Article  CAS  Google Scholar 

  27. Pérez-Merino, P., and S. Marcos. Effect of intraocular lens decentration on image quality tested in a custom model eye. J. Cataract. Refract. Surg. 44:889–896, 2018.

    Article  Google Scholar 

  28. Petternel, V., R. Menapace, O. Findl, et al. Effect of optic edge design and haptic angulation on postoperative intraocular lens position change. J. Cataract. Refract. Surg. 30:52–57, 2004.

    Article  Google Scholar 

  29. Poyales, F., Garzón, N., Pizarro, D., Cobreces, S., and A. Hernández. Stability and visual outcomes yielded by three intraocular trifocal lenses with same optical zone design but differing material or toricity. Eur. J. Ophthalmol. 29(4):417–425, 2018.

    Article  Google Scholar 

  30. Prinz, A., T. Neumayer, W. Buehl, et al. Rotational stability and posterior capsule opacification of a plate-haptic and an open-loop-haptic intraocular lens. J. Cataract. Refract. Surg. 37:251–257, 2011.

    Article  Google Scholar 

  31. Remón, L., Siedlecki, D., Cabeza-Gil, I., and B. Calvo. Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling. J. Biomed. Opt. 23:1, 2018.

    PubMed  Google Scholar 

  32. Ridley, H. Intra-ocular acrylic lenses after cataract extraction. Lancet 259:118–121, 1952.

    Article  Google Scholar 

  33. Rossum Guido, V., and F. L. Drake. Python 3 Reference Manual. Paramount, CA: CreateSpace, 2009.

    Google Scholar 

  34. Shah, G. D., M. R. Praveen, A. R. Vasavada, V. A. Vasavada VA, G. Rampal, and L. R. Shastry. Rotational stability of a toric intraocular lens: influence of axial length and alignment in the capsular bag. J. Cataract. Refract. Surg. 38:54–59, 2012.

    Article  Google Scholar 

  35. Vounotrypidis, E., C. Lackerbauer, D. Kook, M. Dirisamer, S. Priglinger, and W. Mayer. Influence of total intraocular lens diameter on efficacy and safety for in the bag cataract surgery. Oman J. Ophthalmol. 11:144–149, 2018.

    PubMed  PubMed Central  Google Scholar 

  36. Werner L. Biocompatibility of intraocular lens materials. Curr. Opin. Ophthalmol. 19:41–49, 2008.

    Article  Google Scholar 

  37. Werner, L., M. Tetz, I. Feldmann, and M. Bücker. Evaluating and defining the sharpness of intraocular lenses: microedge structure of commercially available square-edged hydrophilic intraocular lenses. J. Cataract. Refract. Surg. ;35:556–566, 2009.

    Article  Google Scholar 

  38. Wirtitsch, M. G., O. Findl, R. Menapace, et al. Effect of haptic design on change in axial lens position after cataract surgery. J. Cataract. Refract. Surg. 2004;30:45–51.

    Article  Google Scholar 

  39. Woodward, M. A., J. B. Randleman, R., Stulting, and Doyle. Dissatisfaction after multifocal intraocular lens implantation. J. Cataract. Refract. Surg. 35:992–997, 2009.

    Article  Google Scholar 

  40. Zvorničanin, J., and E. Zvorničanin. Premium intraocular lenses: the past, present and future. J. Curr. Ophthalmol. 30:287–296, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research support from the Spanish Ministerio de ciencia, innovacion y universidades (Grant DPI2017-84047-R ) and the Department of Industry and Innovation (Government of Aragon) through the research group Grant T24-17R (cofinanciado con Feder 2014–2020: Construyendo Europa desde Aragon). The authors also acknowledge the support of the Tissue Characterization Platform of CIBER-BBN, an initiative funded by the VI National R & D & i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. I. Cabeza-Gil was supported by PRE2018-084021.

Conflict of interest

No author has a financial or proprietary interest in any material or method mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Cabeza-Gil.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabeza-Gil, I., Ariza-Gracia, M.Á., Remón, L. et al. Systematic Study on the Biomechanical Stability of C-Loop Intraocular Lenses: Approach to an Optimal Design of the Haptics. Ann Biomed Eng 48, 1127–1136 (2020). https://doi.org/10.1007/s10439-019-02432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02432-9

Keywords

Navigation