Skip to main content
Log in

Modelling Particle Transport and Deposition in the Human Healthy and Stented Tracheobronchial Airways

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The main goal of this study is the quantification of the particle transport and deposition within the human airways during light, normal and exercise breathing conditions using the computational fluid dynamics. In particular we presented a comparison between healthy and stented airways. The considered tracheobronchial model is based on the Weibel symmetric model in which we have inserted the Dumon prosthesis at different locations and on the CT-based geometries of a healthy and a stented airway. The results indicate an important redistribution of the particle deposition locations. Local overdoses can be found in the proximal regions of the prostheses, independently of the breathing conditions, of the particle size and of the considered geometry. The presented work is aimed to contribute to the understanding of the particle deposition in the human lung and to improve drug-aerosol therapies. For patients that underwent airways reconstructive surgery, it can give detailed information about the deposition efficiency and it may help targeting specific airways regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Atsou, K., C. Chouaid, G. Hejblum. Variability of the chronic obstructive pulmonary disease key epidemiological data in europe: systematic review. BMC Med. 9:7, 2011.

    Article  Google Scholar 

  2. Chen, X., W. Zhong, B. Sun, B. Jin, X. Zhou. Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD-DPM approach. Powder Technol. 217:252–260, 2012.

    Article  CAS  Google Scholar 

  3. Chen, X., W. Zhong, X. Zhou, B. Jin, B. Sun. CFD-DPM simulation of particle transport and deposition in pulmonary airway. Powder Technol. 228:309–318, 2012.

    Article  CAS  Google Scholar 

  4. Chen, X., Y. Feng, W. Zhong, B. Sun, F. Tao. Numerical investigation of particle deposition in a triple bifurcation airway due to gravitational sedimentation and inertial impaction. Powder Technol. 323:284–293, 2018.

    Article  CAS  Google Scholar 

  5. Deng, Q., C. Ou, J. Chen, Y. Xiang. Particle deposition in tracheobronchial airways of an infant, child and adult. Sci. Total Environ. 612:339–346, 2018.

    Article  CAS  Google Scholar 

  6. Deng, Q., C. Ou, Y. M. Shen, Y. Xiang, Y. Miao, Y. Li. Health effects of physical activity as predicted by particle deposition in the human respiratory tract. Sci. Total Environ. 657:819–826, 2019.

    Article  CAS  Google Scholar 

  7. Dumon, F. A dedicated tracheobronchial stent. Chest 97:328–332, 1990.

    Article  CAS  Google Scholar 

  8. Dumon, F., S. Cavaliere, J. P. Diaz-Jimenez, J. M. Vergnon, F. Venuta, M. C. Dumon, K. L. Kovitz. Seven-years experience with the dumon prosthesis. J. Bronchol. 3:6–10, 1996.

    Article  Google Scholar 

  9. Farkas, A., I. Balásházy. Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. J. Aerosol Sci. 38:865–884, 2007.

    Article  CAS  Google Scholar 

  10. Farkhadnia, F., T. B. Gorji, M. Gorji-Bandpy. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways. Austral. Phys. Eng. Sci. Med. 39:43–58, 2016.

    Article  Google Scholar 

  11. Hoet, P., I. Brueske-Hohlfeld, O. Salata. Nanoparticles-known and unknown health risks. J. Nanobiotechnol. 2:12, 2004.

    Article  Google Scholar 

  12. Kadota, K., A. Imanaka, M. Shimazaki, T. Takemiya, K. Kubo, H. Uchiyama, Y. Tozuka. Effects of inhalation procedure on particle behavior and deposition in the airways analyzed by numerical simulation. J. Taiwan Inst. Chem. Eng. 90:44–50, 2018.

    Article  CAS  Google Scholar 

  13. Kleinstreuer, C., Z. Zhang. Airflow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech. 42:301–334, 2010.

    Article  Google Scholar 

  14. Kleinstreue, C.r, Z. Zhang, Z. Li. Modeling airflow and particle transport/deposition in pulmonary airways. Respir. Physiol. Neurobiol. 163:128–138, 2008.

    Article  Google Scholar 

  15. Longest, P. W., M. Hindle, S. D. Choudhuri, J. Xi. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J. Aerosol Sci. 39:572–591, 2008.

    Article  CAS  Google Scholar 

  16. Longest, P. W., S. Vinchurkar, T. Martonen. Transport and deposition of respiratory aerosols in models of childhood asthma. Aerosol Sci. 37:1234–1257, 2006.

    Article  CAS  Google Scholar 

  17. Malvè, M., S. Chandra, J. L. López-Villalobos, E. A. Finol, A. Ginel, M. Doblaré. CFD analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea. Comput. Biomech. Biomed. Eng. 16:198–216, 2013.

    Article  Google Scholar 

  18. Martonen, T. B., C. J. Musante, R. A. Segal, J. D. Schroeter, D. Hwang, M. A. Dolovich, R. Burton, M. Spencer, J. S. Fleming. Lung models: Strengths and Limitations, Proceedings of the Consensus Conference on Aerosols and Delivery Devices, Bermuda, 1999. Respir. Care 45:712–736, 2000.

  19. Nowak, N., P. P. Kakade, A. V. Annapragada. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390, 2003.

    Article  Google Scholar 

  20. Piemjaiswang, R., S. Shiratori, T. Chaiwatanarat, P. Piumsomboon, B. Chalermsinsuwan. Computational fluid dynamics simulation of full breathing cycle for aerosol deposition in trachea: effect of breathing frequency. J. Taiwan Inst. Chem. Eng. 97:66–79, 2019.

    Article  CAS  Google Scholar 

  21. Pourmehran, O., T. Gorji, M. Gorji-Bandpy. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech. Modell. Mechanobiol. 15:1355–1374, 2016.

    Article  Google Scholar 

  22. Pourmhran, O., M. Rahimi-Gorji, M. Gorji-Bandpy, T. Gorji. Simulation of magnetic drug targeting through tracheobronchial airway in presence of an external non-uniform magnetic field using lagrangian magnetic particle tracking. J. Magn. Magn. Mater. 393:380–393, 2015.

    Article  Google Scholar 

  23. Rahimi-Gorji, M., T. B. Gorji, M. Gorji-Bandpy. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Comput. Biol. Med. 74:1–17, 2016.

    Article  Google Scholar 

  24. Rahimi-Gorji, M., O. Pourmehran, M. Gorji-Bandpy, T. Gorji. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J. Mol. Liq. 209:121–133, 2017.

    Article  Google Scholar 

  25. Robinson, S. K. Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23:601–639, 1991.

    Article  CAS  Google Scholar 

  26. Van Rhein, T., M. Alzahrany, A. Banerjee, G. Salzman. Fluid flow and particle transport in mechanically ventilated airways. Part I. fluid flow structures. Med. Biol. Eng. Comput. 54:1085–1096, 2015.

  27. Weibel, E. R. Morphometry of the Human Lung. Springer, New York, 1963.

    Book  Google Scholar 

  28. Zhang, Z., C. Kleinstreuer. Airflow structures and nano-particle deposition in a human upper airway model. J. Comput. Phys. 198:178–210, 2014.

    Article  Google Scholar 

  29. Zhang, Z., C. Kleinstreuer, J. F. Donohue, C. S. Kim. Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 36:211–233, 2005.

    Article  CAS  Google Scholar 

  30. Zhang, Z., S. Qi, Y. Yue, J. Shen, C. Li, W. Qian, J. Wu. Particle disposition in the realistic airway tree models of subjects with tracheal bronchus and COPD. BioMed Res. Int. 2018:7428609, 2018.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Spanish Ministry of Industry and Competitiveness through the research Project DPI2017-83259-R (AEI/FEDER,UE). The support of the Instituto de Salud Carlos III (ISCIII) through the CIBER-BBN initiative is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malvè.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malvè, M., Sánchez-Matás, C. & López-Villalobos, J.L. Modelling Particle Transport and Deposition in the Human Healthy and Stented Tracheobronchial Airways. Ann Biomed Eng 48, 1805–1820 (2020). https://doi.org/10.1007/s10439-020-02493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02493-1

Keywords

Navigation